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Resumo 

O objectivo principal deste trabalho passou por estudar os padrões da marcha humana não-

patológica e patológica. Desta forma, foi necessário desenvolver um protocolo de análise da 

marcha humana, projectado para analisar uma grande variedade de parâmetros biomecânicos 

do movimento humano. O protocolo desenvolvido consistiu numa metodologia eficaz e eficiente 

para preparação do paciente e do ambiente laboratorial, permitindo a análise dos parâmetros, 

cinemáticos, cinéticos, electromiográficos, temporais e espaciais. A metodologia desenvolvida 

incluiu um protocolo de colocação de marcadores, de electromiografia e de aquisição de 

ensaios. Foram também desenvolvidas uma série de rotinas que permitiram automatizar o 

processamento de dados, com a finalidade de gerar uma base de dados de marcha não-

patológica. A análise cinética recorreu ao uso de um software de análise dinâmica multicorpo – 

Apollo. 

Seguidamente, a metodologia desenvolvida foi aplicada na aquisição de padrões de marcha 

de três grupos não-patológicos representativos da população portuguesa (crianças, adultos do 

sexo masculino e adultos do sexo feminino). Os resultados obtidos foram comparados com 

trabalhos anteriores, observando-se resultados concordantes com estes. Desta forma, a 

metodologia utilizada foi validada, obtendo-se uma base de dados de padrões de marcha para 

utilização em futuros estudos, como em reabilitação física e análise clínica. 

Por fim, foram estudados dois sujeitos com patologias de marcha e comparados os seus 

resultados com a população padrão. Esses estudos incluíram ensaios com e sem as suas 

ortóteses. Uma vez mais, esta análise permitiu comprovar a boa aplicabilidade da metodologia 

desenvolvida, uma vez que os resultados obtidos encontravam-se concordantes com a 

literatura. 

 

Palavras-chave: Análise da marcha humana não-patológica, análise da marcha 

humana marcha patológica, análise cinemática e dinâmica da marcha, análise 

electromiográfica da marcha, protocolos de análise de marcha, biomecânica 
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Abstract 

The main objective of this work was to analyze the main human patterns of non-pathological 

and pathological gait. In order to achieve this objective, it was necessary to develop a protocol 

of gait analysis designed to withstand a vast range of biomechanical aspects of the human 

motion. The protocol’s desiderata consists of an effective and efficient methodology for subject 

instrumentation and laboratory setup, enabling the study of time-distance, kinematic, kinetic and 

electromyographic parameters. The proposed methodology includes a marker set protocol, a 

superficial electromyographic protocol and a trial acquisition protocol. Moreover, in order to 

automate the data processing and generate a database of non-pathological patterns a set of 

routines was developed. The kinetic analysis recurred to the use of the multibody dynamics 

software – Apollo. 

In a second part, the developed methodology was applied in the analysis of the gait 

parameters of three non-pathological groups representing the Portuguese population – children, 

male adult and female adult. The obtained results were compared with previous works, 

presenting the expected pattern. Thus, the used methodology was approved, but also allowed 

obtaining the gait patterns for a sample of the Portuguese population, which can be used in 

future studies, such as clinical analysis and physical rehabilitation. 

Lastly, two pathological subjects were analyzed and their results compared with the normal 

obtained patterns. In these studies, it was studied the subjects’ gait with and without their 

orthoses. Once more, the developed methodology was approved, since the obtained results 

were in concordance with literature. 

 

Keywords: Analysis of non-pathological human gait, analysis of pathological human 

gait, kinematic and kinetic analysis of gait, electromyographic analysis of gait, gait acquisition 

protocols, biomechanics 
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Chapter I 

1. Introduction 
 

 

1.1. Motivation 

Doubtless, the twentieth century was marked by several important advances in the scientific area 

and gait analysis followed this tendency. The study of human locomotion reached the pinnacle with 

the great number of works published throughout this century and the application of the acquired 

knowledge to clinical analyses and diagnose. Defining gait is not easy, although almost all humans 

perform this motion every day. It is characterized by a set of movement patterns, whose 

understanding becomes essential not only to comprehend the walking mechanisms but also to allow 

the study of different pathologies. Sutherland stated that the application of gait in clinical brought a 

new approach in the treatment of subjects with neuropathologies, such as cerebral palsy (Sutherland 

2001). 

The clinical application of gait analysis allowed the development of new operations for 

neuropathological subjects as well as the development of biomedical devices such as prostheses and 

orthoses, which besides to the anatomo-physiological function that these confer, are more effective in 

the improvement of the quality of life of patients. These devices have increasingly been customized to 

the needs of each subject, taking into account their comfort and ergonomics. The field of gait analysis 

makes possible the better understanding of these problems using quick and noninvasive analysis 

methods. Essentially, the study of human gait considers four different areas: 1) Time-distance 

parameters – provide the temporal and distance information such as the stride/step time, step/stride 

length, velocity, cadence, etc. 2) Kinematic analysis – studies the movement without considering the 

forces underlying its origin – displacement of body members, angular displacement of joints, etc. 3) 

Kinetic analysis – studies the forces and torques that originate the gait movements. 4) EMG analysis – 

studies the activation of a certain muscle or muscular group. The technological progresses occurred in 

the twentieth century make it possible the development of accurate acquisition systems, which permit 

the quick analysis of these four different areas. 

The numbers of the last Portuguese census (2001) shows that 6.1% of the Portuguese population 

has at least one deficiency, from which 24,6% of these individuals have motor deficiencies and 2.4% 

have cerebral palsy (Gonçalves 2003). These numbers are concerning. However, some of these 

subjects can significantly improve their life style using adapted prostheses/orthoses. For instance, in 
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the US, amongst children with cerebral palsy approximately 53.000 ankle-foot orthoses (AFO) are 

prescribed each year (Lam, Leong et al. 2005). It is important to refer that these devices do not cure 

these neuropathologies, but instead help individuals improving their quality of life, which is essential to 

their welfare, while the scientific community pursues a solution for the pathologies. 

1.2. Objectives 

The main objective of the present work is the development of a database with kinematic, kinetic, 

and electromyographic gait results for a non-pathological Portuguese population. In this sense, the 

implementation of a protocol is intended, as well as the automation of all the analysis process, for the 

purpose of application not only at the academic but also at the clinical level.  Since normal gait 

patterns vary with patient’s age and gender, the database should contain the principal groups studied 

in bibliography – children, adult male, adult female and elderly. 

Firstly a marker set protocol is required, which allows obtaining all the kinematic and kinetic results 

with interest in gait analysis, and it also enables subsequent processing with two distinct software – 

Visual3D
TM

 (c-motion 2010) and the academic software Apollo (Silva 2003). It should also be 

developed a sEMG protocol for the acquisition of muscular activation signals of the muscular groups 

of interest in gait analysis. Since it is intended for both protocols to be clinically applied, it is necessary 

to take in account the robustness and speed of assembly, as well as the capability to detect gait 

disorders. 

Then, a set of gait acquisitions should be performed for all the considered groups, except elderly. 

The kinematic results should be treated firstly with the Qualisys acquisition software – QTM
TM

 

(QUALYSIS 2010) and the electromyographic results with the EMGWorks3.7
TM

 (Delsys 2010) After 

that, a set of user-friendly routines should be developed that allow preparing the inputs for the Apollo 

software. 

In what concerns the development of the database, additional routines should be developed for the 

analysis and management of the Apollo and EMGWorks3.7
TM

 results, generating a user-friendly 

interaction platform, which makes possible a comprehensive consultation of the principal kinematic, 

kinetic and electromyographic results, as well as the comparison of a given subject (non-pathological 

or pathological) with the subject group normal pattern. 

Lastly, the developed protocol and analyzing should allow a deeper study of pathological subjects. 

These results should be compared with the respective normal population pattern. These would be 

conclusive, allowing to understand the anatomo-phisiology characteristics underlying the pathology, 

significantly contributing to the future design of corrective biomedical devices, adapted to each 

subject, which are comfortable, ergonomic and aesthetically acceptable. 

1.3. State of the art 

Although Human movements seem rather simple, these are the result of a highly complex process, 

involving a composite interaction between the skeletal system, the muscle system and the central 

nervous system (CNS). The human gait can be defined as the natural way of the body to transport 

itself safely and efficiently (Winter 1991). Each movement of gait cycle is controlled by a synergistic 

combination of muscular contractions (Stein and Mushahwar 2005). This intrinsic relation between 
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CNS and musculoskeletal system results in a well defined pattern of movements. The analyses of 

these patterns are interlinked with the development of biomechanics. Although “biomechanics” is a 

term adopted in 70’s to describe the scientific area that studies the mechanical analysis of biological 

systems, the first studies are much older (Hall 2003). 

Essentially, the study of human walking is generally divided in four different types of analyses: 1) 

Time-distance parameters 2) Kinematic analysis 3) Kinetic Analysis 4) Muscular Activation 

(Sutherland, Olshen et al. 1980; Winter 1991; Perry 1992; Vaughan, Davis et al. 1999). These types of 

analyses will be briefly described thereafter. 

1.3.1. Kinematic Analysis 

As stated before the kinematic analysis concerns the study of bodies’ motions without considering 

the forces that causes them. This field comprises the displacement, velocity and acceleration of body 

members and angular displacements of joints (Sutherland 1997). The accurate measurement of these 

parameters is critical to understand the normal mechanism of human gait, and posteriorly to allow the 

detection and correction of gait disorders (Sutherland 2002). 

The first scientific description of a stride cycle dates back to 4
th
 century BC, when Aristotle wrote 

De motu animalium (on the motion of animals). This study was based solely on visual analysis of the 

motion – descriptive study (Nussbaum 1985; Nigg and Herzog 1994). The descriptive study of gait 

appeared again in renaissance and subsequent periods (scientific revolution, the age of 

enlightenment). da Vinci, Galileo and Newton performed useful walking descriptions (Whittle 2002). 

However, the first scientific gait analysis is attributed to Borelli’s treatise De Motu Animalium (1682). In 

this work Borelli used geometry to describe gait, running, jumping and muscular contraction, and also 

measured the center of gravity of the body, describing the mechanisms of balance during walking 

(Borelli, Bernoulli et al. 1743). In 1836, the Weber brothers published Mechanik der menschlichen 

Gehwerkzeuge: Eine anatomisch-physiologische Untersuchung which contained the first clear 

description of the gait cycle. These authors also measured with precision the pendulum mechanisms 

of the leg during the swing phase and the time distance-parameters – stride time, stride length, step 

time, step length, etc. (Weber and Weber 1836). 

The first kinematic publications of human locomotion (second half of the nineteenth century) using 

specific tools for the acquisition of motion is reported to two contemporary scientists – Marey and 

Muybridge. Both recurred to photographic techniques to quantify several patterns of human gait. In 

brief, these authors used a set of cameras to take multiple photos of human and animal motion. Marey 

still developed a specific tool, that he named as chronophotographic gun, which allow to take several 

photos in one second (Muybridge 1979; Marey 1994). 

Years later, in an attempt to improve the efficiency of troops, Braune and Fisher studied several 

subjects to determine not only the kinematics of locomotion but also the joint forces and energy 

expenditures. In a series of papers published between 1899 and 1904, they calculated the joint angles 

and displacements of body segments (Braune and Fischer 1887; Braune and Fischer 1889; Braune 

and Fischer 1890; Fischer and Braune 1899). These authors developed a method that they called two-

chronophotography, which consisted in a series of Geissler tubes attached to the limbs segments. 

When stimulated with a high voltage pulse, these tubes emitted a short flash of light. The subjects 
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were asked to perform a certain movement while they were being photographed in total darkness. In 

their works Braune and Fisher also calculated trajectories, velocities and accelerations of body 

segments, which have revealed to be in concordance with the most recent studies. However, the 

method took a long time to prepare the subject (6-8 hours) and additional several weeks of work to 

treat the data and calculate kinematic measures (Braune, Fischer et al. 1987). 

After the II world war, on an attempt of understanding the locomotion for the purpose of treating 

war veterans, Eberhart, Inman and their teams of California University provided a great source of 

knowledge concerning the human movement. These studies also included the use of photographic 

cameras and bulbs (interrupted light) attached to several anatomical points of interest, as the hip, 

knee and the ankle. In some studies Inman et al. used drilled pins in the principal bones and a camera 

over the subject to enable the analysis of movements in the horizontal plane (Eberhart and Inman 

1947; Inman, Ralston et al. 1981). 

Until reaching the present methods, other techniques were used. Murray et al. used a series of 

reflective targets attached to the anatomical interest positions; the subject was photographed while 

walking illuminated with a strobe light. These studies in men, women, elderly and pathological subjects 

allow recognizing some of the main patterns of human gait for these groups (Murray, Drought et al. 

1964; Murray, Kory et al. 1969; Murray, Kory et al. 1970). The introduction of electrogoniometers by 

the Karpovich brothers allowed the quick study of joint angular displacements, since this technique did 

not require the time-consuming data treatment that other methods demanded. There are several 

papers concerning the study of normal patterns of human gait (Kettelkamp, Johnson et al. 1970) and 

gait disorders (Stauffer, Chao et al. 1977) using this tool. However, Sutherland reported some 

problems related to difficulties in avoiding the cross-talking between the three motion axes, the weight, 

dimensions of the device and the impossibility of measuring the torque parameter (it required 

information on the position of joint centers), which led to disuse of this technique (Sutherland 2002). 

Recently, with the advancements in instrumentation and computer technologies, the limitations 

related to the automated capture of motion were progressively eliminated and new methodologies 

were developed. These new methods allowed the application of kinematic analysis in the clinical 

context (Mündermann, Corazza et al. 2006). Among others, visual recording systems can be found 

such as acquisition systems of active and passive markers, as well as magnetic sensors systems 

(Richards 1999). Since then, many works have been published in this field, the most significant are 

those presented by Winter, Sutherland and Perry, due to significant contributions they provided to this 

field (Sutherland, Olshen et al. 1980; Winter 1984; Sutherland, Olshen et al. 1988; Winter 1991; Perry 

1992; Sutherland 1997). The perception of normal gait patterns and the possibility of performing fast 

quantitative studies led to improvements in the treatment of injuries and diseases of the 

musculoskeletal system. The same authors as well as others (Sutherland 1984; Gage and Society 

1991) were also evidenced by their works in the study of gait disorders and other neuropathological 

diseases. 

It is also important to refer to the work of (Kadaba, Ramakrishnan et al. 1991) by its importance in 

the standardization of marker protocols, presenting the Helen Hayes protocol, still currently used and 
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the several works from Cappozzo with great improvements in gait analysis methodologies (Cappozzo 

1984; Cappozzo, Catani et al. 1995; Cappozzo, Catani et al. 1996).  

Lastly, although some of the studies presented in this section are not confined to kinematic 

analyses, these are mentioned due to their importance and contribution to the advances in this area. 

1.3.2. Kinetic analysis 

As referred in the previous section, the kinematic analysis enables the study of the motion without 

considering the forces that originate this motion. The measurement of the biomechanical forces that 

produce the observed movements is essential to understand the gait mechanisms and the energy 

expenditure, since this information allows the calculation of parameters such as the internal forces on 

joints, moments of forces, mechanical power and work (Sutherland 2005). 

To perform a kinetic/dynamic analysis, it is necessary to know the location of the joints and the 

external forces, acting in the mechanical system. The first can be provided by a kinematic analysis, 

while the second requires measurement (De Jalon and Bayo 1994). Essentially, the main external 

forces involved in human locomotion are the gravity and the reaction forces between the ground and 

the foot, and thus the accurate measurement of these parameters is essential to perform such 

analysis (Sutherland 2005). 

The idea of a reaction force is firstly attributed to Aristotle, “…just as the pusher pushes, so the 

pusher is pushed”, though this formulation was only performed by Sir Isaac Newton in 19
th
 century – 

“for every force applied there is an equal and opposite reaction.” (Newton 1833). The first historical 

reference to a scientific method for recording the ground reaction forces (GRF) dates from the late 19
th
 

century, where two Marey students – Carlet and Ampar developed a system using air reservoirs that 

allowed the measurement of the vertical component of GRF. They obtained a typical “m” curve similar 

to the ones obtained with modern force plates (Carlet 1872). In the mid-1940s, Elftman presented a 

model of a force plate with the capacity of measuring the forces in more than one plane. In a series of 

papers the author studied the distribution of pressure in the human foot, the three components of the 

GRF and presented some ideas about potential and kinetic energy and angular moments (Elftman 

1934; Elftman 1938; Elftman 1939). Although several models of force plates had been developed 

before Elftman’s prototype, the idea of applying the measurement of external forces to the calculation 

of joint torques was originally conceived by this author in 1939 (Elftman 1939). However, the 

mathematical formulation lacked technical sophistication and the equations were not clear, though 

both Winter and Sunderland considered this work as “creative and scientifically splendid” (Sutherland 

2005). 

A milestone in the development of gait kinetic analysis was the work from Bresler and Frankel, 

using inverse dynamics, presenting the first correct formulation to calculate moments of forces 

(Bresler and Frankel 1950). 

The major knowledge contribution for gait kinetic analysis was probably done by Winter, with a 

series of articles studying torque, mechanical power and work patterns of joints for normal and 

pathological subjects (Winter, Quanbury et al. 1975; Winter, Quanbury et al. 1976; Winter and 

Robertson 1978; Winter 1979; Winter 1981; Winter 1983; Winter 1984; Winter 1991). Other important 

works in this area were published by Gage, Davis and their team, focused in the study of kinetic 
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parameters for children suffering from several neuropathologies (Gage and Society 1991; Ounpuu, 

Gage et al. 1991; Rose, DeLuca et al. 1993; Gage, Deluca et al. 1995; Ounpuu, Davis et al. 1996; 

DeLuca, Õunpuu et al. 1998). 

1.3.3. Electromyographic analysis 

Electromyography (EMG) is an experimental technique that allows the recording and analysis of 

myoelectric signals, which result from variations in the state of muscle fiber membranes (Basmajian 

and De Luca 1985). Since muscles are the structures that produce the active movements, the study of 

their activation patterns is important to understand the human locomotion and especially to detect 

several neuropathologies (Sutherland 2001). 

The first reference to the study of muscle contraction dates from 17
th
 century, in which 

Swammerdan discovered that stroking the innervating nerve of a frog muscle generated a contraction 

(Medved 2001). Redi recognized the connection between muscles and generation of electricity, when 

he observed that electric discharge in electric ray fish were generated by a highly specialized muscle 

(Redi 1671). Also studying frogs, Galvani showed that electric stimulation of muscular tissue produced 

contraction and consequently force (Galvani and Green 1953). With the development of the 

galvanometer in early 1800s, it became possible to measure bioelectric signals. Using this device in 

animals, Matteucci proved that muscular contraction was related to the existence of bioelectric 

stimulus (Matteucci and Savi 1844). Few years later, Bois-Reymond, provided the first evidence of 

electrical activity in human muscles during a voluntary contraction, also using a galvanometer. This 

author also acknowledged the importance of a good skin preparation in improving the signal 

magnitude (Du Bois-Reymond 1848). The term electromyography was only applied by Marey in the 

late 19
th
 century (Medved 2001). Pratt demonstrated that the signal magnitude in EMG is related with 

the muscle and with the recruitment of individual muscle fibers, rather than the size of the neuronal 

impulse (Pratt 1917). It is important to refer, that the 20
th
 century has been marked by major 

developments in this field. In this century some researchers have been evidenced, for instance Jasper 

constructed the first electromyograph (Medved 2001) and Basmajian and de Luca by the number of 

papers published in this area (Basmajian and De Luca 1985; De Luca 1997). 

The introduction of EMG in gait analysis was applied by Inman and his team, during the study of 

walking in normal and amputee subjects (1944-1947). However, the protocol could not be applied in 

clinic since it was too laborious, time-consuming and painful (being an invasive method) (Eberhart and 

Inman 1947; Inman, Ralston et al. 1952; Ralston, Todd et al. 1976; Inman, Ralston et al. 1981). After 

Inman’s work several researchers studied the normal and pathological patterns of human gait. Close, 

who had worked with Inman, published several papers studying the muscle phasic activity in normal 

and poliomyelitis subjects (Close and Todd 1959; Close 1964). A milestone in the development of 

EMG was the conception of fine-wire EMG electrodes by Basmajian, as these electrodes allowed 

painless examinations and eliminated the necessity of using intra-dermal local anesthetics. The 

application of this new method enabled the study of multiple muscles in each analysis (Basmajian and 

Stecko 1962). Sutherland became notorious by the several papers published in the study of EMG in 

normal and abnormal subjects (Sutherland, Bost et al. 1960; Sutherland 1966; Sutherland, 

Schottstaedt et al. 1969; Sutherland, Olshen et al. 1980). Perry studied the differences between fine-
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wire and surface electrodes and considered that the superficial electrodes should only be used in the 

study of muscular groups, though when applied in clinic (neuropathological subjects), Perry 

considered that the lack of selectivity may have little clinical significance (Perry, Easterday et al. 1981 

b)). Finally, it is important to refer all the knowledge provided by Winter in this area. Firstly, this author 

presented a set of amplitude normalization methods to use in EMG gait analysis. Using these 

algorithms, the inter-subject variability decreased substantially, significantly improving the sensitivity of 

the analysis (Yang and Winter 1984). Besides all the contributions Winter provided in the fields of 

kinematics and kinetic, this author presented several papers studying the intra and inter subject EMG 

patterns in gait (Yang and Winter 1985; Arsenault, Winter et al. 1986; Arsenault, Winter et al. 1986; 

Arsenault, Winter et al. 1986; Winter and Yack 1987; Õunpuu and Winter 1989; Winter 1991). 

1.3.4. Theories of Human Walking 

Although the intrinsic control between CNS and the musculoskeletal system, the human gait can be 

considered as a passive mechanism. Essentially, literature provides three different models to explain 

the small energy expenditure in the gait (Kuo 2007). In 1953, Saunders et al. presented the model of 

six gait determinants, which consist in six gait patterns that help minimizing the horizontal and vertical 

displacements of the body’s center of mass (COM). These determinants are: 1
st
) Pelvic Rotation, 2

nd
) 

Lateral Pelvic Tilt, 3
rd

) Knee Flexion during the Stance Phase, 4
th
) and 5

th
) Foot, Ankle and Knee 

Mechanisms and 6
th
) Lateral displacement of the pelvis. During a gait cycle, the COM trajectory 

presents a smooth regular sinusoidal curve in the plane of progression, oscillating twice in the vertical 

plane and once in the horizontal plane. Saunders considered that by decreasing the magnitude of 

these displacements, the energy expenditure would be lower, since the forces necessary to accelerate 

and decelerate the COM would also be lower (Saunders, Inman et al. 1953).  

The second theory, the inverted pendulum, was presented in 1966 by Cavagna and Margaria. It 

proposes that the stance leg acts like a pendulum describing an arc in progression plane. Essentially, 

theory considers a conversion of potential energy in kinetic energy and vice-versa, preserving the 

overall mechanical energy of the system. The model also considers that the swing leg acts entirely by 

the action of the gravity during the swing phase, as a non-inverted pendulum (Cavagna and Margaria 

1963; Cavagna and Margaria 1966). 

Both theories have been accepted, despite presenting contradictions. In inverted pendulum, if the 

leg acts like a pendulum in swing and stance phases, the energy is conserved. This implies a null 

work and therefore there would be no energetic consumption. On the other hand, walking with a flatten 

trajectory presents higher energetic expenditure than would be the expected. (Kuo 2007) Kuo et al. 

presented a new model that was an improvement of the pendulum theory, considering that the leg 

does not behave passively, rather acting as a forced pendulum with muscular work resulting in 

acceleration and deceleration. The model yielded metabolic rates in agreement with the expected 

(Donelan, Kram et al. 2002; Kuo, Donelan et al. 2005; Kuo 2007). Della Croce et al. proposed a new 

vision of gait’s determinants, concluding that the three fist determinants help to reduce the vertical 

displacement of COM, but the effect is less significant than the one presented by Saunders. Della 

Croce et al. concluded that the reduction of COM vertical displacement is caused essentially by the 4
th
 

and 5
th
 determinants (Della Croce U, Riley P.O. et al. 2001). 
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1.4. Main Contributions 

The contributions of this thesis are: 

 To develop an experimental methodology of analysis of the human gait to be applied in 

Laboratório de Biomecânica de Lisboa, there allows the study of the principal time-

distance, kinematic, kinetic and electromyographic parameters. This methodology includes: 

a protocol for motion acquisition, a protocol for sEMG acquisition a set of routines to 

process and analyze the obtained results, generating a database of non-pathological 

subjects. 

 The application of the developed methodology, in order to acquire the gait patterns of three 

non-pathological groups representing the Portuguese population (children, male adult and 

female adult). 

  The application of the developed methodology in the study of pathological subjects. 

1.5. Structure and Organization 

This thesis is organized in nine chapters: 

Chapter I – presents a first approach to the field of this work. It contains the motivation and the 

objectives that the author proposes to achieve. The state of the art of the different matters of the study 

is also presented discussed. 

Chapter II – provides an overview of the locomotor system, focusing in the study musculoskeletal 

system. The main objective of this review is present the anatomic concepts behind the gait analysis. 

Chapter III – focuses on the detailed study of human gait. The key terms and concepts used in gait 

analysis are presented. The different phases of gait cycle are described in detail and the 

biomechanical mechanisms underlying the human locomotion are explored. The relation between the 

CNS, the muscular action and the skeletal system will be explored in a context of kinematic, kinetic 

and electromyographic analysis. Different mechanisms of motion and GRF acquisition will be 

discussed. Other issues, such as the estimation of metabolic costs and the time-distance parameters 

will be approached. 

Chapter IV – will provide an overview of the analysis of gait disorders. Since this thesis inserts in 

an ample project, which has also the objective of studying pathological subjects, the principal terms 

used in clinic to describe abnormalities will be presented in this chapter. 

Chapter V – addresses the mathematical formulation behind kinematic and kinetic analysis. Using 

multibody dynamics with fully Cartesian coordinates, motion equations are deduced. The use of these 

equations in forward and inverse dynamic algorithms is also explained. 

Chapter VI – The acquisition protocols developed for the Laboratório de Biomecânica de Lisboa 

(LBL) are presented. In a first section some considerations about the markers placement are 

discussed and two marker set protocols will be presented. The sEMG protocol is also explained in this 

section, as well as a preamble about EMG signals and data treatment. Finally, the designed routines 

for data treatment and generation of the database will be referred. 
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Chapter VII – The kinematic, kinetic and electromyographic results obtained for all the groups of 

analysis (children, adult men and adult women) will be discussed and compared with previous works. 

Using, the ideas emerging from this analysis, the validity of the designed protocols will be discussed. 

Chapter VIII – presents the obtained results for pathological subjects. In a first section, the intra-

variability of the subjects will be analyzed. After that, these results will be compared with the non-

pathological patterns presented in chapter VII, the principal deviations to these normal patterns will be 

discussed, taking ideas for future works.  

Chapter IX – In this last chapter will be presented the most relevant conclusions of the work, 

suggesting considerations for future developments in the routines and protocols presented in chapter 

VI. In this chapter future applications will also be explored, as the utilization of the gait analysis in the 

development of ergonomic and comfortable biomedical devices. 
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Dynamics And Control of Active Hybrid Orthoses (MIT-Pt/BS-HHMS/0042/2008). 
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Chapter II 

2. Locomotor System 

 

 

The human motion results of a set of complex interactions between muscles, ligaments, bones and 

joints. In order to introduce the anatomic concepts underlying gait analysis, this chapter will present a 

small introduction of the body segments with interest in gait analysis – lower limbs and pelvis. The 

figures illustrating the ideas presented in the following sections can be consulted in Appendix A. 

2.1. The Skeletal Anatomy 

The Human body is constituted by 206 bones (80 axial skeleton and 126 Appendicular skeleton) 

which have several functions as support, protection, enabling movement of the body, etc. Figure 59 

shows a representation of the human skeleton, with the bones indicated as blue representing the axial 

skeleton and the yellow representing the appendicular skeleton (Tortora and Grabowsky 2004).  

2.1.1. Lower Limb 

Each lower limb is composed by 30 bones and can be divided in 3 parts: thigh, leg and foot. 

Thigh – corresponds to the structures between the pelvis and knee. It is composed by one bone – 

femur, which is the longest, heaviest and strongest bone of the body. The proximal end (greater 

trochanter) articulates with the acetabulum of the hip bone to form the hip joint, and its distal ends 

expand into the medial condyle and lateral condyle, articulating with the tibia and the patella to form 

the knee joint. The body of the femur bends medially, and therefore the knee joint is located medially 

in relation to the hip joint. Since the female pelvis is wider, the femur slope will be greater in women 

(vide Figure 60) (Tortora and Grabowsky 2004). 

Leg – The structures between the knee and ankle joints are designated as the leg. It is constituted 

by 3 bones (vide Figure 61): 1) Patella – also named as kneecap, is a small triangular bone in front of 

the joint between the femur and tibia (Knee Joint). Its functions are to increase the leverage of the 

tendon, maintain the position of the tendon when the knee is flexed and to protect the knee joint. 2) 

Tibia – is the larger and stronger of the leg bones. Its proximal end expands into the lateral and medial 

condyles, which articulate with the condyles of the femur to form the knee joint. The distal end of the 

tibia articulates laterally with the fibula at the fibular notch (inferior tibiofibular articulation) and medially 

with the talus forming the medial prominence of the ankle – medial malleolus. 3) Fibula – is located on 

the lateral side of the tibia. The proximal end of the tibia (head of fibula) articulates with the lateral 
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condyle of the tibia (superior tibiofibular articulation). On the other hand, the distal end articulates 

laterally with the tibia and talus, forming the lateral prominence of the ankle – lateral malleolus (Tortora 

and Grabowsky 2004). 

Foot – represents the body segment distal to the leg. It consists of 24 bones that can be divided in 

3 groups: ankle, metatarsals and phalanges (vide Figure 62). The bones of the foot are arranged in 

three arches, two longitudinal and one transverse, which support the weight of the body and provide 

an ideal distribution of the body weight on the foot, and leveraging while walking. This last point is very 

important for the human locomotion, since this arrangement of foot the bones contributes to a lower 

energy expenditure during walking and running. The longitudinal arches extend from the front to the 

back of foot and has two parts (medial and lateral). The transverse arch is formed by the navicular, the 

3 cuneiforms, and the bases of the five metatarsals. It is important to refer that these arches are 

flexible, helping to absorb mechanical shocks (Tortora and Grabowsky 2004). 

Ankle – or Tarsus is constituted by 7 short bones arranged in two rows. The posterior row is 

consists in 2 bones – talus and calcaneus. The anterior part of ankle contains the cuboid, navicular 

and three cuneiform bones (first, second, and third cuneiform). The talus is the only bone that 

articulates with leg – medially with the medial malleolus of the tibia and laterally with the lateral 

malleolus of the fibula (Pina 1999). 

Metatarsals – consist in a group of 5 bones, numbered I to V from the medial to lateral position 

from the skeletal of metatarsus. Each metatarsal consists of a proximal base, an intermediate body 

and a distal head. The base of each metatarsal bone articulates with one or more of the tarsal bones 

at the tarsometatarsal joints and the head with one of the first row of phalanges at the 

metatarsophalangeal joints. Their bases also articulates with each others at the intermetatarsal joints 

(Gray 1918). 

Phalanges (of the foot) – are constituted by 14 bones arranged in 3 rows. As in the metatarsals 

bones, each phalange is also composted by a proximal base, an intermediate body and a distal head. 

The great toe (Hallux) has only two large phalanges (proximal and distal). The remaining toes are 

constituted by three phalanges (proximal, medial and distal) (Tortora and Grabowsky 2004). 

2.1.2. Pelvic Girdle 

The pelvic girdle (pelvis) is composed by four bones: the two hip bones, sacrum and coccyx. These 

four components are united by 3 joints: 1) Pubic symphysis – located in an anterior position, uniting 

the two hip bones. 2) Two sacroiliac joints – located in a posterior position, these joint are responsible 

for the union of the two hip bones with the sacrum (vide Figure 63). The pelvic girdle is responsible for 

providing stable support for the vertebral column, protecting the pelvis viscera and attach the lower 

limbs to the axial skeleton (Tortora and Grabowsky 2004). 

The hip bone is a flat bone composed of three parts: 1) Ilium – located superiorly and the largest of 

the three subdivisions; 2) Ischium – the lowest and strongest portion of hip bone; 3) Pubis – the lower 

anterior portion. These three parts are distinct from each other in children, but are fused into one in the 

adult. The union of these structures takes place in and around a large cup-shaped articular cavity, 

designated as acetabulum. This cavity is the socket for the head of the femur, constituting the 
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acetabulofemoral joint, better known as hip joint (vide Figure 64) (Gray 1918; Tortora and Grabowsky 

2004). 

It is important to refer the two distinct and palpable bone structures of the hip bone, since it will 

have importance in the placement of markers that will be addressed in chapter VI: 1) Anterior-superior 

iliac spine (ASIS) 2) Posterior-superior iliac spines (PSIS). These are located respectively in the 

anterior and posterior position of the iliac crest (superior border of wing of ilium) (vide Figure 64) (Gray 

1918). 

2.1.3. Differences of female and male skeletons 

Some differences can be observed between the skeleton of men and women, which are traduced 

in variations in weight and proportions of the body segments. Generally male bones are larger and 

heavier than female bones, and the articular ends are thicker in relation to the shafts. Other 

differences are observed in points of muscle attachment (tuberosities, lines and ridges), since some 

male muscles are larger than those of the female. Nonetheless, the overall differences between the 

skeletons of male and female bodies are rather few when compared with the existing similarities 

(Riggs, Melton et al. 2004; Tortora and Grabowsky 2004). 

The most significant differences between men and women male skeletons are in the pelvis; these 

differences are related with pregnancy and childbirth. The female pelvis is smaller, lighter, wider and 

shallower, and is more circular in shape. Other important differences can be found between male and 

women skeletons, e.g. women tend to have narrower rib cages, smaller teeth, less angular mandibles 

and less pronounced cranial features (Washburn 1948; Tortora and Grabowsky 2004). 

2.2. The Muscular System 

The muscular system is the anatomical structure responsible for the generation of human 

movements. Its control is performed by the nervous system, although the control of some muscles (as 

the cardiac muscle) is completely autonomous. The human movements are not typically generated by 

a single muscle, but instead by a muscular group – muscular redundancy, as well as the muscles are 

arranged in opposing pairs in joints, generating opposing movements (extension-flexion, abduction-

adduction) – agonist and antagonists muscles. Agonist muscles are the responsibles for generating a 

desired action, while the antagonists have the opposite action, i.e. stretch and yield to the movement 

of the agonist (Tortora and Grabowsky 2004). 

In this section, the focus is put only on muscles that can be measured by sEMG and have 

relevance in the human walking, notwithstanding that many other muscles are active during a gait 

cycle. The choice of the muscles to be analyzed in this work is based in Winter and Vaughan studies 

(Winter 1991; Vaughan, Davis et al. 1999). 

The muscular analysis in this thesis aims to understand the pattern of activation of the principal 

lower limb muscular groups, considering that the setup must be rapid and robust. For this reason, the 

following muscular groups were selected (Merletti, Rau et al. 2010): 

 Anterior Leg – Dorsiflexion and assistance in the inversion of the foot; 

 Posterior Leg (Triceps Surae) – Plantar Flexion of the ankle joint and assistance in the flexion the 

knee joint; 
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 Anterior Thigh – Extension of the knee joint and flexion of the hip joint; 

 Posterior Thigh – Flexion and lateral rotation of the knee joint; 

 Gluteus – extension and lateral rotation of hip joint. 

Since each muscular group is constituted by a different set of muscles, for the development of 

sEMG protocol, the option was made in choosing the ones with higher importance. Once more, the 

anatomical figures that help understanding the ideas discussed in this chapter can be found in 

Appendix A (Figure 65-66). 

2.2.1. Anterior Leg 

The muscles of anterior leg are responsible for dorsiflexion, inversion and eversion of foot and 

extension of toes. This muscle group is constituted by 3 muscles: Tibialis anterior, Extensor digitorum 

longus and Extensor hallucis longus (Pina 1999). In order to analyze the dorsiflexion of foot, only the 

tibialis anterior was considered. 

Tibialis Anterior – has origin in the tibia and insertion at first the metatarsal and first cuneiform. 

The Tibialis Anterior is responsible for dorsiflexion and inversion of the foot. Its antagonists are the 

plantar flexors of posterior compartment such the gastrocnemius and soleus (Tortora and Grabowsky 

2004). 

2.2.2. Posterior Leg 

The muscles of the posterior compartment of the leg are responsible for the plantar flexion and 

inversion of the foot, flexion of the toes and assisting in the flexion of the knee joint. This muscle group 

is constituted by 6 muscles – Triceps surae, Plantaris, Plopiteus, Flexor digitorum longus, Tibialis 

posterior and Flexor hallucis longus (Pina 1999). For this analysis, only the 3 muscles, forming the 

triceps surae – Gastrocnemius Lateralis, Gastrocnemius Medialis and Soleus, were considered. 

These muscles have interest for the study of plantar flexion and inversion of the foot. Their antagonists 

are the dorsiflexors of the anterior compartment such as the tibialis anterior (Pina 1999; Tortora and 

Grabowsky 2004). 

Gastrocnemius Lateralis – has its origin in the lateral condyle of the femur. The muscles of the 

triceps surae have a common insertion – calcaneal tendon or Achilles tendon and insert onto the 

posterior surface of the calcaneus. This muscle has the function of plantar flexion of the foot and 

assistance in flexion of the leg at the knee joint (Pina 1999; Tortora and Grabowsky 2004). 

Gastrocnemius Medials – has its origin in the medial condyle of the femur and has the same 

insertion and the same action of Gastrocnemius lateralis (Pina 1999; Tortora and Grabowsky 2004). 

Soleus – is a complex multi-pennate muscle, usually having a separate (posterior) aponeurosis 

from the gastrocnemius muscle. The soleus muscle is divided into marginal, posterior and anterior 

parts. A majority of soleus muscle fibers originates from each side of the anterior aponeurosis, 

attached to the tibia and fibula. Other fibers originate from the posterior surfaces of the head of the 

fibula and its upper quarter, as well as from the middle third border of the tibia. The several fibers of 

the Soleus are inserted in the calcaneus by means of the calcaneal tendon (Pina 1999; Agur, Ng-

Thow-Hing et al. 2003). 
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2.2.3. Anterior thigh (Anterior external muscles) 

This muscle group is constituted by 3 muscles – Sartorius, Tensor fasciae latae and Quadriceps 

femoris. They have several functions, such as the extension and the flexion of leg at knee joint, and 

the flexion, abduction and laterally rotation of the thigh at the hip joint (Pina 1999; Tortora and 

Grabowsky 2004). In order to study the extension of the leg and flexion at the hip joint, only the 

Quadriceps femoris was choose to analyze. 

 Quadriceps Femoris – is a bulky muscle group constituted by four portion or heads muscles 

on the front of the thigh: The Rectus femoris which is the superficial muscle and occupies the middle 

of the thigh, covering the most of the other three quadriceps muscles. It has origin in the illium and the 

insertion at the patella by means of the quadriceps tendon, which is common to all of the four heads, 

and then tibial tuberosity by means of the patellar ligament; The Vastus lateralis which has origin on 

the lateral side of the femur; Vastus medialis which has origin on the medial side of femur; The Vastus 

intermedius which has origin between Vastus lateralis and medialis, but deep to the rectus femoris. 

The four heads are extensors of the leg at knee the joint. The Rectus femoris is also a flexor of 

the hip joint (flexes thigh) because it has its origin in the ilium (Pina 1999; Tortora and Grabowsky 

2004). 

2.2.4. Posterior Thigh (Hamstrings) 

The Hamstrings refers to the group of 3 posterior thigh muscles – Biceps Femoris, Semitendinous 

and Semimembranosus. All have the function of leg flexion at the knee joint and extension of thigh at 

the hip joint (Tortora and Grabowsky 2004). 

In order to study the flexion of the knee joint and the extension of the hip joint, the biceps femoris 

group was chosen. 

Biceps Femoris – is a stretched muscle constituted by 2 heads (long head, short head).  The 

long head has origin in the distal part of sacrotuberous ligament and the posterior part of ischium 

tuberosity (tendon common with semitendinosus), the short head has origin in the lateral lip of the 

linea aspera, proximal 2/3 of supracondylar line and lateral intermuscular septum (femur). Both have 

the same insertion at the head of the fibula which articulates with the back of the lateral tibial condyle. 

The functions of the Biceps femoris are the flexion and lateral rotation of the knee joint. The long head 

also extends and assists in lateral rotation of the hip joint. The antagonists of the biceps femoris are 

the quadriceps muscles (Pina 1999; Tortora and Grabowsky 2004). 

2.2.5. Hip 

Several muscles can be found in the hip/pelvis region. Essentially, these muscles are divided in 

four groups according this action and orientation: gluteal, adductor, iliopsoas and lateral rotator group. 

The thesis will focus on principal flexors and extensors of the hip – respectively Iliopsoas group and 

Gluteus maximus.  

Iliopsoas – The Iliopsoas refers to the combination of 3 muscles (Iliacus, Psoas major and Psoas 

minor). The muscles of iliopsoas are the strongest of the hip flexors (Rectus femoris, Sartorius and 

Tensor fasciae latae) and have an important role in the flexion of the thigh at the hip joint during gait. 
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Their antagonists are the Gluteus maximus and Biceps femoris (long head) (Tortora and Grabowsky 

2004; Correa, Crossley et al. 2010). 

Psoas Major and Iliacus have the same insertion, attaching at the level of the inguinal ligament that 

has its insertion in the lesser trochanter. The Iliacus has origin in the iliac fossa, while Psoas major 

has origin in the thoracic vertebrae XII, lumbar vertebrae I-IV and from neighboring intervertebral 

discs. Psoas minor has origin in the XII thoracic vertebrae, I lumbar vertebrae and intervertebral discs 

between T12 and L1. Psoas minor has the insertion in the iliopectineal eminence (Pina 1999; Tortora 

and Grabowsky 2004). 

However, the iliopsoas group is a set of internal muscles, which renders its measurement with 

sEMG extremely difficult, and as such this muscle group will not be considered in this thesis. 

Gluteus Maximus – is the most superficial and the largest of the three gluteus (Gluteus maximus, 

Gluteus medius and Gluteus minimus). Its origin is situated in the posterior gluteal line of ilium, 

sacrum, coccyx and aponeurosis of sacrospinalis. Gluteus maximus has its insertion in the gluteal 

tuberosity of the femur and iliotibial tract of fascia lata. Gluteus Maximus has the function of extension 

and lateral rotation of the hip joint. The lower and upper fibers also assist in the adduction of the hip 

joint. By means of its insertion into the iliotibial tract, gluteus maximus helps to stabilize the knee joint 

when it performs a movement of extension (Pina 1999; Tortora and Grabowsky 2004). Due to its 

crucial role during gait, as hip extensor, and given also its superficiality, the gluteus maximus has been 

integrated in the gait analyses performed in this thesis (Correa, Crossley et al. 2010). 

2.3. Classification of Joints 

The skeleton bones are interlinked between them, and such connections are designated as joints 

or articulations (Gray 1918). The joint structure determines the direction and range of movement. 

However, not all joints are flexible, as for instance some have the function of remaining rigid to 

stabilize the body. These functions determine their classification (Graaff 2001). 

The structural classification of joints is based on two criteria – the presence or absence of a space 

between the articulating bones (synovial cavity) and the type of connective tissue that binds the bones 

together. As a result, the articulations of the human body are grouped into three principal categories, 

according to their structure (Graaff 2001; Tortora and Grabowsky 2004): 

Fibrous Joints – the bones are held together by fibrous connective tissue. They are also 

characterized by the absence of joint cavities. 

Cartilaginous Joints – In these joints, the bones are held together by cartilage and are also 

characterized by the absence of joint cavities. 

Synovial Joints – the articulating bones are capped with cartilage and often by accessory 

ligaments. These type of joints are characterized by joint cavities filled with fluid (synovial cavity). 

The joints can also be divided by their functions. This functional classification is based on the 

degree of permitted movement. This classification is usually divided in three groups (Graaff 2001; 

Tortora and Grabowsky 2004): 

Synarthroses – Immovable joints. 

Amphiarthyroses – Slightly movable joints. 

Diarthroses – Freely movable joints. 
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Fibrous joints are divided in 3 sub-divisions: (1) suture (synarthroses) –articulation in which 

contiguous margins of the bones are united by a thin layer of fibrous tissue (only found in the skull); (2) 

syndesmoses (amphiarthyroses) – are fibrous joints held together by collagenous fibers or sheets of 

fibrous tissue called interosseous ligaments (distal articulation between fibula and tibia): (3) 

gomphoses (synarthroses) – it is formed by the insertion of a conical process into a socket. (occurs 

only between the root of teeth and the supporting bones of the jaws.(Gray 1918; Graaff 2001; Tortora 

and Grabowsky 2004) 

The cartilaginous joints are divided in 2 sub-division: (1) synchondrosis (synarthroses) – the 

articulating bones are connected by hyaline cartilage; when bone growth ceases, bone replaces the 

hyaline cartilage (an example is the epiphyseal plates in an elongating bone); (2) symphysis 

(amphiarthyroses) – is a cartilage joint in which the ends of the articulating bones are covered with 

hyaline cartilage, but the bones are connected by a broad, flat disc of fibrocartilage (an example is the 

pubic symphysis) (Gray 1918; Graaff 2001; Tortora and Grabowsky 2004). 

Most joints in the human body are of the synovial type (freely movable). This type has the function 

of provide a wide range of precise, smooth movements, and at same time grant stability, strength and 

sometimes rigidity of the skeletal system. A synovial joint is characterized by a typical structure, whose 

unique characteristic is the presence of a space called synovial cavity that allows a free movement (all 

synovial joints are diarthroses). The articulating bones at a synovial joint are covered by an articular 

cartilage (hyaline) that reduces friction between bones and helps to absorb mechanical shocks. 

Synovial joints are enclosed by an articular capsule composed of dense regular connective tissue that 

encloses the synovial cavity and unites the bones. The articular capsule is composed by 2 layers – a 

fibrous capsule and a synovial membrane. The synovial membrane is responsible for secreting the 

synovial fluid. Its functions include reducing friction (lubrification), nutrient supply and removing 

metabolic waste. The synovial joints can have accessory ligaments  in its structure (vide Figure 67) 

(Gray 1918; Graaff 2001; Tortora and Grabowsky 2004). 

Despite having a similar structure, the synovial joints can be classified into six main categories – 

gliding, hinge, pivot, condyloid, saddle and ball-and-socket. The classification has in consideration the 

structure and the motion that these enable (vide Figure 68)  (Graaff 2001; Tortora and Grabowsky 

2004). 

Gliding or planar joints – enable side-to-side and back-and-forth movements, with some slight 

rotation. Examples of these joints are intertarsal, intercarpal, etc. 

Hinge Joints – enable angular movements like a hinge of a door (rotation about an axis). This joint 

is characterized by one concave bone that fits into another convex bone. Examples of hinge joints are 

the elbow, knee, ankle, etc. 

Pivot Joints – are characterized by a limited movement of rotation about a central axis. The joint is 

formed by a pivot-like process turning within a ring, or a ring on a pivot; the ring being formed partly of 

bone, and partly of ligament. Examples of these joints are the proximal articulation of the radius and 

ulna for rotation of the forearm or the atlantoaxial joint (allows the rotation of head). 

Condyloid Joints – are characterized by a convex oval-shaped projection of bone that fits into the 

concave oval shaped depression of another bone. This permits angular movements in two directions, 
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as in up-and-down and side-to-side motion. The radiocarpal joint of the wrist and 

metacarpophalangeal joints are examples of this joint. 

Saddle Joints – there are two places in the human body where this type of joint occurs – Trapezium 

of carpus with the I metacarpal bone and the articulation between the malleus and incus (ear). The 

articular surface of a bone is saddle-shaped, and the articular surface of the other bone fits into the 

saddle (like a rider sitting in a horse). Side-to-side and up-and-down are the movements allowed by 

this type of joint. 

Ball-and-Socket Joints – enable movements in several directions. The ball-like surface of the bone 

fits into a cuplike cavity of the other bone. In the human body, ball-and-socket occurs only in shoulder 

and hip joints.  

2.4. Types of movements at synovial joints 

 Generally, the movements at synovial joints are divided in four kinds – gliding, angular, circular 

and special (Gray 1918).  The thesis will focus on angular movements, since are the ones with more 

importance in the description of gait. The figures that help understanding the ideas discussed in this 

section can be found in Appendix A (Figure 69). 

2.4.1. Gliding Movement 

Gliding movement is characterized by a simple movement in which one surface glides or moves 

over another without any angular or rotator movement. It is common in all movable joints, though in 

some joints (e.g. carpus and tarsus) it  is the only motion permitted (Gray 1918). In 

2.4.2. Angular Movements 

This type of movements occurs only between long bones and it is characterized by an increase or 

decrease in the angle between these bones. It is usual to consider four types of angular movements – 

flexion and extension, which characterize movements in the sagittal plane, and abduction and 

adduction, which occur in the frontal plane (Gray 1918; Graaff 2001). 

Flexion – is a movement that decreases the joint angle on the anteroposterior plane. Bending the 

knee or the elbow are examples of this type of movements. It is important to mention two special 

flexion movements, which occurs in the ankle. The motion that brings the top of the foot towards the 

lower leg is called dorsiflexion, on the other hand the opposite motion, i.e. pressing the foot 

downwards is named plantar flexion. 

Extension – represents an angular movement in which the joint angle is increased. It is the reverse 

of flexion and, generally, extension returns a body part to its anatomical position. Examples of 

extension movements are straightening of the elbow and knee. Hyperextension occurs when a part of 

the body is extended beyond the anatomical position. Examples of hyperextension movements are the 

backward movement of the humerus during the arm swing that is a characteristic of human walking  

Abduction – is a movement of a body part away from the midline (sagittal plane) in the frontal 

plane. Examples of abduction movements include lateral movement of humerus upward, the femur 

away from the body, etc.  



 

19 
 

Adduction – is the opposite movement of abduction and represents the movement of a bone 

toward the midline of the body.  

2.4.3. Circular Movements 

This type of movements occurs when a bone with a rounded or oval surface articulates with a 

corresponding depression on another bone.  Circumduction and rotation are the two basic types of 

circular movement (Graaff 2001). 

Rotation – represents a movement of a body part around its own axis without undergoing any 

displacement from this axis. Examples are turning the head from side to side (as in answering “no”) 

and twisting the waist (Graaff 2001; Tortora and Grabowsky 2004). 

Circumduction – is a movement of a body part so that a cone-shaped airspace is traced. The distal 

end performs a circular movement while the proximal extremity serves as pivot. Examples of this 

movement are doing a circle with an arm (humerus at shoulder joint) and doing a circle with a leg 

(femur at hip joint) (Gray 1918; Tortora and Grabowsky 2004). 

2.4.4. Special Movements 

This group includes all the other movements that are not included in previous groups. Special 

movements include elevation/depression, protraction/retraction, inversion/eversion and 

supination/pronation (Whittle 2002; Tortora and Grabowsky 2004). 

Elevation – is the movement that raises a body part, such as closing the mouth by elevating the 

mandible and lifting the shoulders to shrug. 

Depression – is the downward movement of a body part (opposite of elevation). Opening the mouth 

(depress the mandible) is an example of this movement. 

Protraction – represents a movement of the body’s part forward, on a plane parallel to the ground. 

Thrusting the mandible outward is an example of protraction. 

Retraction – is the opposite movement of protraction. The mandible is retracted when moved 

backward. 

Inversion – is the movement of the foot sole inward, or medially. 

Eversion – represents the movement of the foot sole outward, or laterally.  

Supination – is a specialized rotation of the forearm so that the palm of the hand faces forward or 

upward. The supination of the palms is one of the features that define the anatomical position. 

Pronation – is the opposite of supination, representing the movement of the forearm so that the 

palm is directed to the rear or downward. 

Generally, in pathological cases, the terms varus and valgus are also used, in order to describe 

respectively a permanent angulation of a body part toward or away from the midline. 
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Chapter III 

3. Human Gait 

 

 

 

Walking is probably one of the most common movements in humans, although its definition is not 

so simple. Walking can be defined as the natural means of transport of the body safely and efficiently 

from one location to another. Winter considers that to achieve safe and efficient propulsion of the 

body, five key tasks must occur during each gait cycle (Winter 1991; Perry 1992). 

 Maintenance of support of the upper body during stance; 

 Maintenance of upright posture and balance of the total body; 

 Control foot trajectory to achieve a safe landing; 

 Generation of mechanical energy to maintain the present forward velocity or to increase the 

forward velocity; 

 Absorption of the mechanical energy for shock absorption and stability or to decrease the 

forward velocity of the body 

In this chapter, non-pathological gait will be reviewed, with special emphasis to the study of 

patterns and mechanism, behind these five tasks. 

3.1. Gait specific terminology and definitions 

In this section the terminology and the concepts most used in gait analysis will be addressed. It is 

important to refer that this terminology resulted from years of observation and kinematic analyses of 

non-pathological subjects. In order to enable the effective communication between gait researchers, 

prosthetist and orthopedists was essential to standardize these concepts, to make their 

comprehension possible by all (Ayyappa 1997). 

3.1.1. Spatial Terminology 

Spatial reference system – The spatial reference system often changes among different authors, 

but all follow the right hand rule to define the three orthogonal vectors. For example Winter uses the X 

axis to define the direction of progression, Y vertical direction and Z lateral direction; Vaughan uses X 

to define the direction of progression, Y lateral direction and Z to vertical direction (Winter 1991; 

Vaughan, Davis et al. 1999). In this thesis the reference system used is the same as Vaughan. 
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However, in order to avoid errors caused by different spatial reference systems, the gait researchers 

generally use the terms anterior-posterior, medial-lateral and vertical to refer respectively the X, Y and 

Z directions. 

 

Figure 1– representation of: a) planes of reference b) anatomical position 

 

Planes of reference – in order to visualize and study the structural arrangements of several organs, 

the body may be sectioned and diagrammed according to three fundamental planes of reference 

(Figure 1a)): 

Sagittal plane – A sagittal plane extends vertically through the body dividing it into right and left 

portions. Usually it is named midsagittal plane to a sagittal plane that crosses lengthwise through the 

midplane of the body, dividing it equally. 

Coronal plane – also denominated as frontal plane, is a vertical plane that divides the body into 

anterior (front) and posterior (back) portions. 

Transverse plane – also denominated as horizontal plane or cross-sectional plane, divides the 

body into superior (upper) and inferior (lower) portions. 

Ipsilateral – is used to describe the same side of the body. 

Contralateral – is used to describe the opposite side of the body. 

Anatomical Position – Generally, the movement directions of a body segment are described in 

relation to an established position – anatomical position. In the anatomical position, the body is erect, 

the feet are parallel to each other and flat on the floor, the eyes are directed forward, and the arms are 

at the sides of the body with palms of hands turned forward and the fingers pointed straight down 

(Figure 1b)) (Graaff 2001).  

Mean plane of progression – represents the average vertical plane along which the center of mass 

of the body moves during a gait cycle (Winter 1991). 

3.1.2. Terminology related with contact of feet with the ground 

The terminology presented in following sections (3.2.2. until 3.2.7) is based on Winter and Õunpuu 

work (Winter 1991; Õunpuu 1994). 
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Initial Contact (IC) – is a term to define the instant when the foot/shoe makes the first contact with 

the ground. This term is applied independently of how the contact with the ground is made. 

Heel Contact (HC) – represents the instant when the heel of the foot/shoe hits the ground (IC for 

non-pathological subjects). 

Ball Contact – is the instant when the ball of the foot/shoe (metatarsal head hits the ground. 

Generally, this term is used to represent the initial contact of pathological subjects, when the IC is not 

made by the heel. 

Foot Flat (FF) – represents the instant during stance phase when the foot/shoe is totally flat on the 

ground, independently of how the IC was made. 

3.1.3. Terminology related with feet leaving the ground 

Heel Off (HO) – is the instant during the stance phase when the heel leaves the ground. 

(Corresponds to the start of push-off event) 

Toe Off (TO) – represents the instant when the toe of the foot/shoe leaves the ground. In normal 

gait, this instant represents the final of the stance phase and the start of swing phase. 

End of Contact (EC) – in pathological gait, when the TO is not the end of weight bearing, this term 

can be used to represent the instant when the last part of foot/shoe leave the ground. 

3.1.4. Terminology related with periods during a gait cycle 

Stride Period - is the two consecutive steps (left-right or right-left) period of time, in seconds. The 

stride period is measured from a determined event of one foot to the same event of the same foot. 

Considering the IC of the foot to analyze as the first event of stride period is an usual procedure. 

Commonly, in order to compare subjects with different stride periods, or to compare successive strides 

of the same subject, the stride period is represented as a percentage (0% – first IC to 100% - next IC). 

Step Period – is the period of time for one step, in seconds. It is measured from a determined event 

of one foot to the same event of the other foot. Once more, it is usually consider the IC as the first 

event of the step period. Both stride and step period usually consider the IC as the foot event. 

Single support – represents the period of time, when only one limb is contacting the ground. It is 

usual express this event in seconds or as a % of stride period. 

Double support – represents the period of time, when the two feet are simultaneously in contact 

with ground. Generally, it is expressed in seconds or as a % of the stride period. In a gait cycle, this 

event occurs two times: 

 Right double support – is the time between IC of the left foot and TO of right foot; 

 Left double support – is the time between IC of right foot and TO of left foot;  

Flight Period – represents the period of time when there is no contact of feet with ground 

(applicable only in running studies). 

Stance Period – is a term used to represent the period of time, in which a determined foot is in 

contact with ground, expressed in seconds or as a % of the stride period. This period is usually sub-

divided in 3 sub-events: weight acceptance, mid-stance and push-off. 

Weight acceptance/Loading response (WA) – represents the time period between IC and maximum 

knee flexion during stance phase. WA is also expressed in seconds or as a % of the stride period. In 
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several pathological gaits, when knee flexion does not occur, this term is defined as the time between 

IC of the ipsilateral limb and TO of contralateral limb. This phase is characterized by the energy 

absorption by means of ankle, knee and hip muscles. Although the hip and ankle muscles absorb 

rapidly the energy after IC, the knee muscles continue absorbing the energy until the maximum knee 

flexion is reached. 

Mid Stance (MS) – represents the time period between WA (when the contralateral foot leaves the 

ground) and terminal stance (when the body weight is aligned over the forefoot), expressed in 

seconds or as a % of the stride period. 

Terminal stance – represents the time period between MS and pre-swing, expressed in seconds or 

as a % of stride period. 

Pre-Swing – begins with the IC of the contralateral foot IC and ends with TO of the ipsilateral foot. 

Thus, pre-swing corresponds to the second double support phase. This event is expressed in seconds 

or as a % of the stride period. 

Push Off (PO) – is the period of time when the lower limb is pushing away from the ground. The leg 

muscles perform a powered plantar flexion. PO is usually expressed in seconds or as a % of stride 

period, it begins shortly after HO and ends with TO. 

Swing Period – represents the period of time, in which the foot is not in contact with the ground. 

This period is expressed in seconds or a % of stride period. Usually, the swing period is sub-divided in 

three parts – early swing, middle swing and terminal swing. In some pathological cases, were the 

foot/shoe does not leave the ground, it can be defined as the period of time while all portions of foot 

are in forward movement. 

Early/Initial Swing – represents the period of time between the TO and Middle Swing of the same 

foot; it is usually expressed in seconds or as a % of stride. 

Middle Swing (MSw) – is the instant that represents the midpoint between TO and IC of the same 

foot. 

Terminal/Late Swing –represents the period of time between MSw and IC of the same foot, 

expressed in seconds or as a % of stride period.  

3.1.5. Terminology related with distances during a gait cycle 

Step Length – is the horizontal distance measured between a determined point of a foot and the 

same point of the other foot and is usually expressed in meters. Step length represents the distance 

traveled forward by a single leg. The term is also used to express the average step length over many 

strides. Since the step length can presented differences between the two legs, the measurement of 

this parameter should consider both legs. 

Stride Length – is the horizontal distance measured between a determined point of a foot and the 

same point of the same foot. This parameter represents the distance traveled forward by the two legs 

and is equal to the sum of the right step length and left step length. Even in presence of marked gait 

asymmetry, stride length is equal for the two limbs, if the subject is walking in a straight line.  

Step Width - represents the mediolateral distance between the heels of the two feet. 
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3.1.6. Segment and joint angles 

In gait analysis, human body segments are generally modeled as rigid bodies and their rotation is 

assumed to take place about a fixed point in the proximal segment, which is considered to be the 

center of the joint (Kadaba, Ramakrishnan et al. 1991). Euler angles have been successfully applied 

to describe a relative rotation of one segment with respect to another segment in 3D space (Chao, 

Laughman et al. 1983). Other methods can be used, for example Lewis and Lew defined the 

orthopedic angles that are the same as Euler angles but they are defined according to the clinical 

terms (flexion, extension, abduction, etc.) (Lewis and Lew 1977). 

The definition of joint angles in this thesis follows the convention of Winter and International Society 

of Biomechanics. The convention states that all segments must be defined as positive in a counter-

clockwise direction from the horizontal in order that the first and second time derivatives have the 

correct polarity (to enable the calculation of joint mechanical power). Thus, the joint angles have a 

positive value if these are in flexion (dorsiflexion) and negative value if these are in extension (plantar 

flexion) (Winter 1991; Wu, Siegler et al. 2002; Wu, Helm et al. 2005). 

3.1.6.1. Angles in the Sagittal Plane 

In the sagittal plane, when a subject progresses from left to right, the view assumed is the right. 

However, the left limb should have the same convention of right limb, in order to allow the direct 

comparison between the results of the two legs. It’s usually expressed in degrees, though radians can 

also be used. According to (Winter 1991) and taking in consideration in consideration Figure 2, the 

sagittal angles are defines as follows: 

Foot Angle (θft) – the angle between a horizontal line and a line along the bottom of foot 

measured for the distal end (V metatarsalphalangeal joint). 

Leg Angle (θlg) – represents the angle between a horizontal line and the line defined by knee joint 

and ankle joint measured from the distal end of leg (ankle joint). 

Thigh Angle (θth) – is the angle between a horizontal line and the line defined by the thigh (hip 

joint to knee joint) measured from the distal end of thigh (knee joint). 

Pelvic Tilt – represents the angle between a horizontal line and the pelvis (line between PSIS iliac 

and the ASIS) 

Trunk Angle (θtr) – represents the angle between a horizontal line and the line defined by the axis 

of spine (C7 to L5) 

Ankle Angle (θa) – represents the angle between the foot and the leg minus 90º. (θa=θft-θlg-90º) 

Knee Angle (θk) – represents the angle between the thigh and the leg.  

(θk=θth-θlg) 

Hip Angle (θh) – is the angle measured between the thigh and the trunk. (θh=θth-θtr) 

3.1.6.2. Angles in the Frontal Plane 

In frontal plane movements as adduction, varus, inversion and foot pronation (defined as 

inversion of calcaneus with respect to the middle line of the leg) have positive value. Movements as 

abduction, valgus, eversion and foor supination have negative values. However, it is important 
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remember that the values of hip abduction/adduction, knee valgus/varus, and ankle inversion/eversion 

are zero in anatomic position. 

Pelvic Obliquity – represents the angle of the pelvis in frontal plane, measured between horizontal 

and the line defined by right and left ASIS. 

Trunk List – represents the angle between horizontal and the line defined by trunk (C7 to L5), with 

positive value in a counter-clockwise direction. 

  

Figure 2 – Definition of joint angles of lower limbs in sagittal plane (Winter 1991) 

3.1.6.3. Angles in the Transverse Plane 

Pelvic rotation – represents the angle of pelvis in transverse plane. It’s reported as rotation 

towards the right or to the left. 

Angle Foot – represents the angle between the line of progression and the line defined by 

calcaneus and the II Metatarsal. 

3.1.7. Terminology related with cadence and velocity 

Cadence – is the rate at which a subject walks and is expressed as the number of steps per unit of 

time, generally steps/min. 

 Normal/Free Cadence – is the natural cadence of a subject, i.e. the cadence that is voluntarily 

assumed 

 Fast/Slow Cadence – is a forced cadence of a subject above/below the natural cadence and 

must be specified by the researcher. 

Gait Velocity – represents the average horizontal speed of the body along the plane of progression 

measured over one or more stride periods. Generally is reported in m.s
-1

 or m.min
-1

. It is defined as: 

 
   

                     

   
         

1)  

( 1)  

3.2. Locomotion Control and Sequence Gait-Related Processes 

Understanding the control of automated movements, such as walking, is still under studying. A fact 

is that the CNS have the capability of to coordinate, which joint, body segment should be moved, the 

exact time of these movements and the force to apply. Thus, movements like walking need to meet a 

set of biomechanical requisites. This control is done by patterns of electric signs that are sent along 

the peripheral nervous system (PNS) – nerves, which activate the appropriate set of muscles. As the 
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march has to adapt to several obstacles encountered, the body movements are continuously adapting 

to guarantee a smooth progression – a large flow of sensory input from the periphery of the system 

have the capability to adapt these movements by selecting the most optimal information (Duysens and 

Crommert 1998). 

Human locomotion results from a set of cyclic events controlled by the central pattern generating 

networks (CPGs). These unities are located in a large extent within the spinal cord, though its action is 

controlled by the peripheral and descending signals. CPGs are responsible for the generation of the 

complex patterns of electric signs addressed in previous paragraph. However, Borghese et al. cited a 

series of papers, in which is observed differences in time-distance, kinematic and kinetic parameters 

not only across speeds and subjects, but even from trial to trial (Borghese, Bianchi et al. 1996). 

Segers considers that gait pattern is influenced by mechanisms of feedback between the CNS and 

the networks of PNS, but the collective output is the responsible for the level of performance and 

control variable. These collective outputs results from an interaction of the system mechanics (muscle 

mechanics, inertial and material properties, anthropometrics, etc.) and external mechanics (external 

loads, material properties), which produced the coordinated movement patterns. Using the 

terminology of the dynamic control systems theory, the behavior of the system can be described by 

two parameters – 1) the order parameter that reflects the organizational status of the system 

(collective output of the system) and 2) the control parameter that drives the reorganization of the 

system (intensity of the graded intentional drive) (Segers 2006). 

 

Figure 3 – Simple representation of the control of human locomotion (Segers 2006) 

 

Several studies in postural control try to analyze the human body response to various external 

perturbations. Although this reflexive approach enables one to examine the input/output 

characteristics of different closed-loop feedback systems, it does not consider explicitly the stabilizing 

roles of possible open-lop control schemes or the steady-state behavior of the human body during 

periods of undisturbed stance (Collins and Luca 1992). 

Borghese hypothesized a hierarchy in the neural control, “in which global intersegmental co-

ordination is prescribed in terms of general speed-invariant patterns, whereas local variables that 

pertain to single muscles and joints are defined on the basis of specific task demands”. Borghese also 

suggested that high-order laws of intersegmental co-ordination are defined by “the orientation angles 
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of each limb segment relatively to the direction of gravity and that of forward progression”. This 

hypothesis follows three considerations (Borghese, Bianchi et al. 1996): 

 The locomotion must comply with requirements of postural stability and dynamic equilibrium. 

The COM position of the body and the geometrical configuration of the legs are accurately 

controlled relative to the gravity direction in response to perturbation of static posture in man. 

 The anticipatory adaptation to changing support conditions during locomotion involves a 

number of synergies of upper limb, trunk and lower limbs movements. Kinematic constraints 

as well as position sense for upper limbs in man are normally defined in terms of orientation 

angles of upper arm and forearm with respect to the vertical and sagittal directions. 

 The head is normally stabilized in space during posture and locomotion, and provides an 

inertial platform for monitoring gravity direction. 

Figure 4 shows the various interactions between the CNS, PNS and musculoskeletal effector 

system that occur in the cycle of human gait, in a simplified way and without taking into account the 

feedback loops. The sequence of events that must take place during walk are (Vaughan, Davis et al. 

1999): 

1) Registration and activation of the gait command in the CNS; 

2) Transmission of the gait electro-signals by the PNS to the several muscular groups of 

interest; 

3) Contraction of muscles and development of tension; 

4) Generation of forces and torques at joints; 

5) Regulation of the joint forces and torques by rigid skeletal segments based on the 

anthropometric characteristics of the subject; 

6) Production of movements on the several body segments, which are recognizable as 

functional gait; 

7) Generation of ground reaction forces. 

 

Figure 4 – Functional basis for the way in which we walk (cause-and-effect-model) 

3.3. Gait Cycle 

Gait presents a cyclic pattern that is repeated stride after stride. Generally, in gait studies, the gait 

descriptions considers only a single cycle, assuming that all the cycles are equal. However, this fact is 
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not strictly true, but it is a reasonable approximation (Vaughan, Davis et al. 1999). A gait cycle (GC) 

corresponds to one complete stride (two steps) and includes all the activities considered between one 

determined event of one foot and the same event of the same foot (Norkin and Levange 1992). 

Usually, the IC event is considered the first event of the GC (0%), the same assumption will be 

followed in this thesis. During a GC two main phases can be considered – Stance phase and Swing 

phase. Stance phase starts with the IC of one foot and continues while this is on the ground, during 

approximately 60-62% of the stride period. The swing phase begins with the TO of the same foot; 

during this phase the foot is not contacting the ground and the leg is swinging in the direction of 

progression (backward to forward), preparing the next foot strike. Generally swing phase accounts for 

38-40% of GC. Both phases are also sub-divided in several sub-phases according the events (Winter 

1991; Vaughan, Davis et al. 1999). 

3.3.1. Stance Phase sub-phases 

Usually, three sub-phases and five events are considered during stance phase. These will be 

presented in next paragraph by chronological order of events/phases (Vaughan, Davis et al. 1999): 

1
st
 phase – first double support – begins with the IC of the ipsilateral foot and ends with the TO of 

the contralateral foot.  

2
nd

 phase – single limb stance – starts with TO of the ipsilateral foot and ends with the IC of the 

contralateral foot. This phase occurs simultaneously with the swing of the ipsilateral leg. 

3
rd

 phase – second double support – occurs when both feet are again in ground. This phase begins 

with the IC of the contralateral foot and ends with TO of the ipsilateral foot.  

1
st
 event – Initial Contact (IC)  

2
nd

 event – Foot Flat (FF)  

3
rd

 event – Mid stance (MS) 

4
th
 event – Heel Off (HO)  

5
th
 event – Toe Off (TO) 

3.3.2. Swing Phase events 

During swing phase is usual consider three distinct events (Vaughan, Davis et al. 1999): 

1
st
 event – Acceleration – begins with TO, when the hip flexor muscles activate to accelerate the 

ipsilateral leg forward. 

2
nd

 event – Midswing – occurs when the ipsilateral foot passes along the contralateral foot. This 

event is coincident with the MS event of the contralateral foot. 

3
rd

 event – Deceleration – occurs when the body muscles slow the leg to prepare the next heel 

contact. 

3.3.3. Pathological Gait Events 

The nomenclature presented is generally applicable to describe the gait of non-pathological 

subjects. However, the gait of some pathological individuals cannot be described using this 

terminology. Therefore, Perry et al. considered the GC divided in 8 events, which are sufficiently 

general to be applied to any type of gait as represented in  (Gage, Deluca et al. 1995; Vaughan, Davis 

et al. 1999). 
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Stance Phase 

1
st
 event – Initial Contact (0%) 

2
nd

 event – Loading Response (0-10%)  

3
rd

 event – Mid stance (10-30%)  

4
th
 event – Terminal Stance (30-50%)  

5
th
 event – Pre-swing (50-60%)  

Swing Phase 

6
th
 event – Initial Swing (60-70%) – starts with TO of ipsilateral foot, continuing until the 

maximum knee flexion is reached. 

7
th
 event – Midswing (70-85%) – corresponds to the period of time between the initial swing and 

the terminal swing. 

8
th
 event – Terminal Swing (85-100%) – this event begins when the ipsilateral thigh is 

perpendicular to the ground. Its finish occurs when the ipsilateral foot hits the ground. 

 

Figure 5 – Schematic representation of a GC using Perry nomenclature (Gage, Deluca et al. 1995) 
 

3.4. Muscle Control Pattern and Detailed Gait Events 

Section 3.4 shows the complexity of motion pattern during a stride, which is only possible to 

achieve due to the existence of a pattern of muscular control. The muscles are the motor units that 

produce active movements. During gait several muscles are activated according their function. 

Generally, their activations can be measured by kinesiological electromyography. Although the gait 

analysis began in 17
th
 century, the study of muscle patterns in gait using EMG was applied only in 

1944 by Vern Inman (Sutherland 2001). 

The functions of the muscle during the gait are not restricted to the production of motion, other 

functions as weight bearing stability, shock absorption and progression over the supporting foot are 

also provided by them (Perry 1992). 
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The study of the muscle pattern during the normal gait is essential to perceive the complexity of 

movements. The comparison of these results with pathological gait can help to predict several 

neuromuscular diseases as well as understand the physiological and anatomical mechanisms of 

failure. It is important to retain that a profile of EMG can be considered for non pathological gait, 

although a pattern of EMG activity changes considerably with the subject.  Arsenault et al. studied the 

profile of EMG during activity in gait for five muscles and observed significant differences in amplitude 

(normalized) to all muscles between subjects. This variability is more significant for muscles with 

multiple functions; e.g. knee and hip muscles present a high variability, especially during the stance 

period where their actions have an important role in the control of the body balance and avoid the 

collapse caused by the gravity action. On the other hand the EMG profiles for the ankle muscles are 

more consistent, due to the high forces required and the little possibility of adaptation (Arsenault, 

Winter et al. 1986 a); Winter 1991). 

In Figure 7 the EMG profile for non-pathological gait can be consulted. Several papers indicate the 

presence of co-contractions resulting of activity of antagonist muscles. Its quantification is very 

difficult, since it is necessary to know the moment-of-force created by them (Winter 1991; Vaughan, 

Davis et al. 1999). 

Several studies referred in Winter, show that the EMG patterns in Children are very similar to 

adults; small differences are found in rectus femoris and lateral hamstring for two age groups ([4-7] 

and [8-11]). Other studies showed minor differences in relation to adults pattern to children with 2 and 

3 years old and significant differences to one year old children (especially in gastrocnemius) (Winter 

1991). 

It is important to note that there are few papers analyzing the muscular activation of the upper body 

(HAT – head, arms and trunk), however its study is important to understand the mechanisms of body 

balance that are characterized by the CNS’s ability to control the acceleration in all involved segments. 

For example the EMG study of pelvic and trunk muscles shows an important role in the balance 

stabilization of superior segments (Winter 1991; Winter, MacKinnon et al. 1993). 

Winter et al. concluded that, in addition to the function in lower limbs, the hip flexors and hip 

extensors muscles have also an important function of controlling the dynamic balance of HAT in the 

plane of progression – passive feedback control. The authors considered that the vestibular system 

(responsible for the balance, orientation in the space, among other functions) has few influence in the 

control of dynamic balance. The same idea is shared by Bauby and Kuo. However they concluded that 

the control of lateral balance is performed by an active visual-vestibular feedback, and a reduction of 

sensory information has a greater impact in this control. Winter et al. considered two mechanisms 

(muscular and kinematic) of control of lateral balance: 1) The hip abductors, assisted by the medial 

acceleration of the hip joint, have an important role in the stabilization of HAT balance during the 

single support. 2) The position (medial/lateral) and placement of foot also helps to control the total 

balance of the body in coronal plane, this mechanism is assisted by the medial/lateral acceleration of 

the subtalar joint  (Winter, MacKinnon et al. 1993; Bauby and Kuo 2000). 

The swing movement of arms (see 3.4.9) can help optimizing the action of the lower limbs since 

these coordinate movements minimize the torque loading on the joints and skeletal structure. It is a 
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fact that the swing motion is not a requisite for a stable walking; however, there is a relation between 

this motion pattern and the energetic requirement – walking without swing motion implies that the 

energy cost is greater in lower limbs caused by an increase of reaction moments in the foot (Park 

2008). 

In the following paragraphs the principal muscular actions in lower limbs and the movements 

produced by them will be described. The explanation is based in Perry and Winter description (Winter 

; Perry 1992). 

3.4.1. Initial Contact  

During IC the ankle is at neutral dorsiflexion, the knee is totally extended and the hip is flexed 

(approximately 30º). In non-pathological gait, the impact occurs with the heel creating a floor reaction 

force that introduces three positions of instability (the alignment of reaction force vector results in a 

controlled plantar flexion torque at the ankle and a flexor torque at the hip and trunk) and one stable 

relationship (the alignment of reaction force vector causes a passive stability in knee). To better 

understanding the relations between GRF vector and the knee and ankle joints, a schematic 

representation of the evolution of this force during stance period is presented in Figure 6. A more 

detailed explanation about GRF will be done in section 3.6.2.1. 

In muscular activity, this event is marked by the action of hip extensors (hamstring, gluteus 

maximus and adductor magnus) that maintain the flexion torques presented. The hamstrings also 

prevent the knee hyperextension.  

The combined action of tibialis anterior, extensor digitorium longus and extensor hallucis longus 

stabilize the ankle and subtalar joints maintaining the foot in neutral position. 

3.4.2. Loading Response  

This phase is characterized by the absorption of the shock from the impact of foot with ground and 

by the WA. This phase is characterized by large muscular activity to control them. 

Sagittal Plane 

The ankle performs a restrained plantar flexion; the foot spins over the calcaneus until being flatted 

(approximately 10º), this reduces the degree of advancement tibial resulting in a knee flexion. As the 

GRF vector is being applied in heel (Figure 6), it causes a plantar flexion; however, the Tibialis 

anterior activates with the objective of decelerating and controlling the ankle motion – controlled 

plantar flexion. 

During WA, the heel rocker action rolls the tibia forward disrupting the knee stability and causing a 

flexor moment. Due to the passive unlock of the knee, a flexion motion of this joint is performed by the 

low level of hamstrings action. The fast action of quadriceps limits the flexion to approximately 18º. 

The hip continues flexed (30º) to maintain the erect posture; however, this suffers a flexor torque 

that is countered by the rapid action of hip extensors (Gluteus maximus and Adductor magnus) and 

assisted by the continuing low level of hamstrings action. The lumbar extensor muscles assisted by 

the hip extensors prevent the flexion of trunk in the pelvis. 
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Coronal Plane 

Due to the rapid transfer of body weight (BW), a strong adduction torque is produced at the knee 

and hip, stimulated by the dropping on the unsupported side of pelvis, limited to 5º by the action of the 

hip abductors (Gluteus medius, Gluteus minimus, Upper gluteus maximus and Tensor fascia lactia). 

The adductor torque at the knee is countered by the action of the iliotibial tract (insertion of Tensor 

fascia latae (abductor of tibia at hip joint) and Gluteus maximus). To absorb the shock of the impact, 

the foot performs a subtalar joint abduction, that is controlled by the action of Tibialis anterior and 

tibialis posterior (Perry 1992; Graaff 2001). 

Transverse plane 

The subtalar joint abduction causes an internal rotation of the talus and in turn a rotation of tibia 

that induces an internal rotation torque in the knee. The deceleration of knee rotation is controlled by 

the iliotibial tract tension and biceps femoris long head action. 

An anterior pelvic rotation can be observed and is restrained by the difference in duration of medial 

and lateral hamstrings. 

3.4.3. Midstance  

The MS is characterized by the restrained ankle dorsiflexion, knee extension, and hand hip 

stabilization in coronal plane. In this phase the intense muscle action is decreased in early middle 

stance and the vector of GRF becomes posterior to hip joint and anterior to the knee and ankle.  

The limb is stabilized by the action of Triceps surae muscles, the knee is extending (controlled by 

the Soleus muscle). Until the passage of vector of forces to anterior knee position, the quadriceps 

remains active – the vastus pull the femur forward.  

The hip reduces its flexed position (30º to 10º), although the action of hip extensor muscles are 

minimal. In this phase the posterior Gluteus medius is still active. 

3.4.4. Terminal Stance  

During terminal stance, the body rolls forward over the forefoot causing a 10º dorsiflexion angle at 

the ankle; the heel rises and the knee extends totally. As a result, a large dorsiflexion torque is 

produced; however the action of gastrocnemius lateralis, gastrocnemius medialis and soleus counters 

that and stabilize the tibia at the ankle. The action of soleus in the tibia also helps to stabilize the knee 

and the hop during this early phase. 

At the end of the terminal stance, the interaction between the foot and the ankle causes an 

advance in the knee, it passes the GRF vector unlocking it and causing its flexion. 

3.4.5. Pre-Swing  

In this phase starts the second double support event, the counterlateral limb hits the ground 

beginning the WA and the ipsilateral limb prepares the swing phase.  

With the continuous advancement of the GRF vector to the forefoot (metatarsophalangeal joint) 

and the loss of magnitude of it due to the transfer of BW onto the other limb, the load demands on the 

foot decreases, causing a high heel rise and a decreasing in the muscular intensity of the triceps 

surae. The result is the advancement of the tibia for an anterior position to the GRF vector causing an 

unrestrained flexion of the knee and the advance of the thigh (increasing the hip angle – flexion), 
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although, in some cases, when the knee flexion is excessive the Rectus femoris is activated to control 

the movement. The flexion of the hip is followed by the development of an abductor torque (caused by 

the alignment of the component of the GRF in the coronal plane with hip joint axis) that is restrained 

by the muscular action of the Adductor longus.  

 

Figure 6 – Sequence of GRF vector (bold vertical lines) and its relations with ankle and knee during stance phase. 
From left to right IC, WA, early MS, late MS, TS and PS 

3.4.6. Initial Swing 

This phase is characterized essentially by two events: 1) Increased knee flexion till approximately 

60º to lift and prevent the dragging of foot with ground. 2) Hip flexion to advance the limb. 

Perry stated that the muscular action during this phase is variable; however some muscles have a 

consistent activation: the short head of Biceps femoris is responsible for the knee flexion (the long 

head is also a hip extensor so its activation would result in a flexion restriction at hip), the iliacus 

performs the flexion and hip and the low action of Sartorius and Gracilis promotes a combined hip and 

knee flexion. 

The ankle angle also varies, the plantar flexion decreases to approximately -10º by the action of 

the tibialis anterior and the extensor digitorium longus. 

3.4.7. Medial Swing 

During MSw, the swing limb continues advancing and the hip flexing, although the action of hip 

flexors is minimal. 

In order to avoid the contact of the foot with ground, the Tibialis anterior, Extensor digitorum longus 

and the Extensor hallucis longus perform a controlled dorsiflexion (low intensity) till neutral position. 

Passively, the knee flexion decreases to 30º 

At the end of this phase, the hamstrings activate to start decelerating the thigh and controlling the 

hip flexion. 

3.4.8. Terminal Swing  

The muscular action is again intensive to prepare the stance phase. The knee continues extending 

passively till neutral position. The hamstrings continue activated to control the hip flexion, decelerating 

the thigh and avoiding the knee hyperextension. At the end of this phase a reduction in the intensity of 

the hamstrings is observed then, the quadriceps activated to extend the knee completely. The ankle 

keeps neutral (in some cases is measured a slightly plantar flexion (-5º)) by the action of the Tibialis 

anterior and the Extensor digitorium longus. 
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3.4.9. Upper limbs and Head 

As the lower limbs, the upper limbs and the head are characterized by a well defined motion 

pattern. Both arms act like a pendulum, they extend and flex alternately describing an arc of 30-40º. At 

IC the ipsilateral shoulder (arm) is at the maximum extension (-24º); with the advancing of the stance 

period, the arm begins to flex, having a maximum flexion of 8º at the end of terminal stance (45% of 

GC). After this event, the ipsilateral arm extends till it has a new maximum of extension at the end of 

the swing phase (IC). 

A pattern in the elbow joint can also be observed. At IC, the ispsilateral elbow is at the maximum 

extension (20º); like the shoulder, with the advancement of stride period, the elbow flexes, though the 

maximum flexion occurs at the IC of contralateral foot (55% GC), approximately 44º. The elbow 

reaches again its maximum at MSw. 

It is important to retain that the magnitude of total arc is influenced by the velocity of the gait. The 

fast cadence is accompanied by an enlargement in this arc. It is caused by the increasing of the 

shoulder extension and elbow flexion while the other arcs remain unchanged. 

 

Figure 7 – Normal EMG patterns for the major muscles of lower limbs during a stride period (Vaughan, Davis et 
al. 1999) 

3.4.10. (As)symmetry of Gait 

Generally in the study of normal gait, it is assumed that the lower limbs have a symmetrical 

behaviour and deviations of this symmetry are considered as pathologies, however this assumption is 

not always valid. The first hypothesis has been accepted for the simplicity of data collecting and 

processing, some studies cited in Sadeghi et al. present results that support the symmetry. Other 
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studies cited in Kim and Eng show that the difference between the two limbs using symmetry index for 

the temporal measures and vertical forces is less than 6% (Sadeghi, Allard et al. 2000; Kim and Eng 

2003). 

However, more recent works demonstrate that the asymmetrical behavior reflects a natural 

functional difference between the limbs; Gunderson et al. cite a series of kinematic studies that 

support this fact (e.g. asymmetries in step length, maximum knee flexion, etc.). These authors also 

tested the asymmetry of the gait and obtained similar results (Gundersen, Valle et al. 1989). 

The asymmetry of lower limbs can also be observed in EMG profiles. Arsenault et al. studied the 

EMG pattern of soleus and rectus femoris and obtained different EMG amplitudes between the legs. 

Õunpuu and Winter after analyzed the EMG profile of seven muscles for both legs concluded that the 

idea of symmetry is not valid for individual subjects and there is a connection between the preferred 

leg and the EMG profile for the plantar flexors muscles (Arsenault, Winter et al. 1986 b); Õunpuu and 

Winter 1989). 

This asymmetry in lower limbs appears to be related with the functional contributions of each limb 

to control and propulsion tasks. Sadeghi et al. consider that a subject tends to use the preferred limb 

to achieve a given objective, while the other limb provides support to that action (Sadeghi, Allard et al. 

2000). 

3.5. Time-Distance Parameters 

In order to analyze the normal and abnormal gait time-distance parameters are usually used – step 

length, stride length, step time, stride time, step width, cadency and velocity. Sutherland considers that 

the step length and step frequency for non-pathological subjects are approximately equal and these 

two parameters can be used to calculate velocity. However, if an asymmetry is observed in these 

parameters, the calculation of velocity must be performed with stride frequency and stride length. It is 

important to note that variability is observed in time-distance parameters between the children, adult 

women, adult men and elderly (Sutherland 1997). 

Sutherland et al. studied the differences of these parameters with children (1-7 years), and 

observed a fast increase in cadence until 2.5-3 years (~180 to ~150) and a stabilization after this age 

(~140-150). On the other hand the stride length increases rapidly until 4 years (~40cm to ~80cm) and 

then continues increasing but with a small rate (~100cm to 7years). The gait velocity follows the same 

pattern of the stride length, increasing rapidly till 4 years (100cm/s) and stabilizing after this age 

(~110cm/s). Sutherland et al. concluded that there is a linear relationship between the step length and 

leg length and therefore the gait velocity is also related with this fact (Sutherland, Olshen et al. 1980; 

Sutherland 1997). 

In adult gait a difference between men and women can also be found, as generally men tend to 

walk with a greater velocity, but with a smaller cadence. The natural cadence in men varies with the 

studies but all present results between 105 and 120 steps per minute. The results for women present 

a cadence that is 6-11 steps/min higher than for men (Murray, Drought et al. ; Winter 1991; Öberg, 

Karsznia et al. 1993). 

Murray et al. also studied the velocity for men and women and obtained respectively 1.51m.s
-1

 and 

1.30m.s
-1

. This result is consistent with other studies cited in Waters et al. and Öberg et al. These last 



 

37 
 

authors studied a total of 233 subjects grouped by the age and sex, in laboratory condition (treadmill 

with 5.5m of walking distance). They have obtained the same differences between men, women and 

children to time-distance parameters, but the values were slightly lower than presented before. They 

concluded that the time-distance parameters vary with the environment of the study (outdoors, short 

walkways and long walkways), subjects tends to walk slower in short walkways (Murray, Drought et al. 

1964; Murray, Kory et al. 1970; Öberg, Karsznia et al. 1993; Waters and Mulroy 1999). 

The stride length, the stride width and the foot angle in transverse plane also present small 

differences between men and women. The average step length, stride length, stride width and foot 

angle in men and women are respectively 0.79m, 1.58m, 0.081m, 7º, 0.66m, 1.32m, 0.071m and 6º 

(Murray, Drought et al. 1964; Murray, Kory et al. 1970). 

As reported, there is a relation between the step length and leg length for children, the same 

relationship is also found in adults, though this correlation is smaller (r=0.51-0.59) for natural cadence. 

However, during fast cadence this relationship plays an important role, the correlation factor increases 

to 0.71 (Perry 1992). 

The studies of time-distance parameters to elderly have showed differences between them. Murray 

et al., in a study of subjects with ages between 65 and 87, observed a decrease in cadence, stride 

length and velocity. The same results have been achieved by Öberg et al. and Menz et al. These last 

authors concluded that the alterations of gait pattern in elderly have the main goal of stabilize the head 

and pelvis to reduce the risk of falls (Murray, Kory et al. 1969; Öberg, Karsznia et al. 1993; Menz, Lord 

et al. 2003). 

However, Winter et al. performed a kinematic and kinetic study of the gait with 15 healthy elderly 

subjects and compared with a control group of 12 healthy young adults with similar height, in which 

they also concluded that the natural walking velocity of such subjects is reduced. The cause relies not 

in a decrease of cadence (elderly – 110.5 steps/min, adult – 111.0 steps/min), but instead in the 

reduction of the stride length (elderly – 1.39m, adult – 1.55m) (Winter, Patla et al. 1990). 

3.6. Acquisition of Kinematic and Dynamic Data in Gait Analysis 

Currently, the gait study is performed by a set of interlinked acquisition systems, which allows 

analyzing each event of the gait cycle. The acquisition of the kinematic data (instant positions of each 

body segment, their translations and joint angular rotations) and dynamic data (external forces) 

became easier, faster and more accurate (Sutherland 2002). 

As seen in chapter I, the mechanisms of gait analyses have undergone an evolution across time. 

The first performed analyzes were a simple description of the observed motion. However, only in the 

XIX century, also denominated as the gait century, technological devices were applied into the study 

of human gait, especially in Étienne Marey and Eadweard Muybridge works (Nigg and Herzog 1994). 

According to Perry, a complete analysis of gait considers five types of measurement systems.  The 

first three systems study the specific events of walking: 1) Motion analysis – permits the study of a 

body segment position and their translation movements. It also allows the analysis of the angular 

movement of joints. 2) Electromyography – allows understanding the period and the relative intensity 

of muscle action. 3) External forces analysis – allows obtaining the magnitude and direction of reaction 

forces, which are essential to calculate the torques in the joints. The other two types of measurement 
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relate the gait mechanics with their effects in the subject: 4) Walking capability – studies the stride 

characteristics and compares it with a non-pathological pattern. 5) Walking efficiency – studies the 

efficiency of gait, analyzing its metabolic cost (Perry 1992). For each type of considered 

measurements, there is not an optimal system to record it. Several techniques can be considered and 

their choice should take into account the objective of the analysis, its price and application 

(clinic/science) (Perry 1992). In the following paragraphs, some of the most used techniques in gait 

analysis and their main characteristics will be presented.  

3.6.1. Motion analysis 

Several systems can be used to quantify and qualify the motion of human body, from simple photos 

to complex acquisition systems of movements in 3D. For example, for a qualitative analysis a set of 

video cameras can be used. However if the main objective of the study is the quantification of gait 

parameters, a system of marker acquisition is necessary (Hall 2003). 

Film Photography – is an older method, which relies on o a large frame camera to record the 

motion by multiple exposures with an interrupted light (strobe light photography) in a dimly lit room. 

The subject is clothed with black clothes that have reflective bands/markers in the segments that will 

be measured. As a result, a series of photos with sticks figures is obtained (Perry 1992; Sutherland 

2002). 

Video Cameras - generally, a set of video cameras is used for a descriptive analysis, in which is 

intended to understand the movement without its quantification. These are also used as a support for 

other systems, e.g. in gait analysis, the video cameras are used simultaneously with the Infrared 

cameras, providing the researcher a vision of the trial. As the human movement is not constrained to a 

single plane, it is usual to use a set of cameras to cover different angles. Some advanced 

systems/software allow calculating general kinematic parameters through image processing (these 

software have the capability to distinguish high-contrast markers) (Hall 2003). 

Goniometers – used in some studies in which the objective is to acquire the joint angular 

displacements. In gait analysis, an electronic version is generally used (electrogoniometer), since 

these enable a continuous angle measurement between two segments in real time (Hall 2003). 

Essentially, two types of goniometers can be considered: 1) single axis – allows the measurement of a 

joint angle only in one plan, and as such, its use has been discarded.  2) triaxial parallelogram – is the 

most used in gait analysis, since it allows measuring angles in the three coordinate planes (coronal, 

sagittal and transverse) (Perry 1992). 

Optical motion capture systems – probably the most used system in gait analysis, since these 

allow the acquisition of the exact 3D position of body segments and the definition of the arcs and the 

position of joints (Perry 1992). The great advantages of their use are the possibility, not only to acquire 

the exact positions of segments, but to define the centers of joint rotation, calculate velocities, 

accelerations, and when associated with a mechanism of external force detection (force plates) this 

systems allow with the support of a proper biomechanical multibody model to calculate moments in 

the joints and muscular forces (Perry 1992; Sutherland 2002). 

These techniques resort to the use of optical sensors, for example infrared cameras and markers 

to track human movements. Generally, the markers are placed over the skin or in elastic bands that do 



 

39 
 

not allow movement. The necessary precautions to a correct placement will be discussed in chapter 6 

(Cappozzo, Catani et al. 1996). 

Two different types of settings can be performed:  

a) Passive systems – lies on the use of reflective markers in the anatomical landmarks of 

segments in study. A set of cameras, strategically placed to cover all the analysis volume, 

emit an infrared beam that is reflected by the markers, returning to the camera. Each 

camera measures the 2D position of each marker and combining the data from different 

cameras with appropriate software, it is possible to reconstruct a 3D model of the 

movement (Zhou and Hu 2004; QUALYSIS 2010). 

b) Active systems – utilize markers that are optically active. Contrarily to the passive case, 

the active markers are the source of the information, emitting a light beam that is captured 

by a set of cameras. The process of reconstruction is similar to the passive systems. The 

active markers can make use of LEDs and LASERs (Richards 1999). 

For a proper reconstruction is essential that each marker is seen by two cameras at least; thus the 

number of cameras and their distribution in space is fundamental and must be strategically thought 

(QUALYSIS 2010). The correct distribution of the cameras is also important to avoid the markers 

occlusion, typical of a dynamic analysis, due to the movement of some segments that can cause 

inconsistent and unreliable results (Zhou and Hu 2004). 

Although the LED markers provide good results (high contrast with background and only one 

marker is active at a given time), their use is limited to a certain number of markers (due to the 

stroboscopic time). To mitigate this problem the use of both passive and active markers at same time 

is advised (Figueroa, Leite et al. 2003). 

The use of passive markers also present some problems, despite having a high contrast with 

background, the presence of many markers in simultaneous can rise some issues in the 3D 

reconstruction, especially if the markers have a small distance between them. To avoid this problem, a 

correct and careful marker placement is essential, as well as a correct calibration of the cameras and 

adjustment of acquisition parameters (Figueroa, Leite et al. 2003; QUALYSIS 2010). 

Non-visual systems – similarly to the motion marker systems, this type also resorts to sensors 

attached to the analyzed body segment. Several types of sensors can be considered and their use 

depends on the measurement target. Within this group are found the systems that use mechanical, 

inertial, acoustic, radio and magnetic sensors (Zhou and Hu 2004). 

For example, the inertial motion capture lies on the use of inertial sensor units (IMUs) attached to 

the body. The great advantage is the portability of the system since it only requires the earth’s 

gravitation force and magnetic fields to function. Associating this fact to the possibility of measuring 

and treating data in real time, leads to its use in robot controlling (e.g. NASA robonaut) (Miller, Jenkins 

et al. 2004). 

The mechanical systems, also referred to as exoskeleton motion capture systems, use a set of 

sensors, generally rigid structures of plastic and metal with potentiometers, attached in articular 

centers with the goal of measuring angular displacements. The advantages of these systems are the 
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possibility of acquisition and treatment of the data in real time and the absence of occlusion, seen in 

optical systems. The goniometers are an example of this type of systems (Miller, Jenkins et al. 2004). 

The electromagnetic motion systems use transmitters to produce magnetic fields in the surrounding 

and then resort to sensors to calculate the position and orientation of the body segments based in 

those magnetic fields. The results obtained are very accurate and each marker has its own sensor 

data channel (this fact avoids the confusion between markers, which can happen in optical systems 

when the distance between the markers is small); however, these systems are very sensitive to the 

metallic interference (transmission source) and the volume of acquisition is relatively small (Gleicher 

1999; O’Brien, Bodenheimer et al. 2000; Miller, Jenkins et al. 2004). 

3.6.2. Dynamography (Ground Reaction Force) 

The study of the Ground Reaction Forces (GRFs) during walking/running allows also the detection 

of several lower extremity injuries, where some are caused by the repeated impact of the foot on the 

ground. The study of the variations of GRFs when compared to the normal permits the development of 

appropriate correctives to each case (Cavanagh and Lafortune 1980). 

Sir Isaac Newton has revolutionized the classical mechanics introducing the three laws of motion in 

XVII century. The third law affirms that forces occur in pairs (Action and Reaction) and these are equal 

in magnitude and opposite in direction (Sutherland 2005). 

During the stance phase, the foot applies a force in the ground that is equally matched by a 

reaction force of the ground. This reaction force vector is characterized by its application point and 

three components (three-dimensional) – one vertical component (z) plus two horizontal shear forces - 

anterior-posterior (corresponds to the direction of progression (x)) and medial-lateral (perpendicular to 

the other two vectors (y)) (Winter 1990; Sutherland 2005) . 

3.6.2.1. Ground Reaction Force during walking 

The three components of Ground Reaction Force (GRF) and their application point present 

distribution curves that are characteristics of the type of movement performed. The GRF components 

vary slightly with gait speed  (slow, normal, fast cadence and running), since for higher cadences the 

impact on ground and the momentum in the joints articulation will be greater and therefore the GRF 

will present a higher magnitude (vide Figure 8) (Cavanagh and Lafortune 1980; Winter 1991; Perry 

1992). 
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Figure 8 – Non-pathological GFR (antero-posterior shear and vertical force) pattern during a stance for; a) slow 
Cadence (left) b) normal cadence c) fast cadence (Winter 1991) 

 

Figure 9 – Non-pathological GFR (medial-lateral shear) pattern during a stance phase normal cadence (Fong, 
Chan et al. 2008) 

 

Vertical Load – In non-pathological gait, the vertical load for normal cadence presents a 

characteristic “m” curve; the magnitude value of the FZ component rises quickly, during the WA, 

having a peak at MS of approximately 110% of the body weight (BW); this phenomenon is caused by 

the drop of the COM adding the effect of acceleration to BW. With the knee flexion during the MS, the 

force plate is partially unloaded and the magnitude value decreases to 80% of BW; this decrease is 

also accentuated by the momentum of the swinging limb. In the terminal stance the value of Fz grows 

again during the plantar flexion of the ankle causing the second peak, which has a maximum value 

similar to the first peak. After that, the value decreases to 0% of BW, while the contralateral limb starts 

the WA phase (Winter 1990; Perry 1992). 

Although the vertical load can provide an idea of a possible pathological condition, sometimes this 

information is less relevant than the change created by the patient’s slower gait. The analysis of 

subjects with painful/weak lower limbs is complicated due to the irregularity of the curve. Perry argues 

that other measures should be consider when the disability is severe (gait velocity, stance time, etc.) 

because the measurement of this parameter does not always returns reliable results (Perry 1992). 

Horizontal Shear – The horizontal shears represents the two components of GRF in the horizontal 

plane, being responsible for the interaction between the foot and the ground. These two components 
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have a maximum magnitude value smaller than the vertical component. However they are essential to 

promote the stability of the stride (avoids sliding) (Perry 1992). 

The anterior-posterior shear represents the component of GRF in the direction of progression – the 

magnitude is positive when the force has the same orientation of the progression (anterior) and a 

negative value when it is contrary (posterior). The plot of anterior-posterior reaction force is 

characterized by a quickly decreasing to a minimum value approximately equal to -13% of BW at 10% 

of stride period. After that, the value starts to become less negative and with the beginning of the HO 

the magnitude of the force takes a positive value and continues rising until a maximum value of 23% 

of BW, caused by the forced plantar flexion in the final of PO (Winter 1991; Perry 1992; Fong, Chan et 

al. 2008). 

The exchange of the BW of one limb to the other creates a reaction component that is 

perpendicular to the direction of progression. Generally, the medial shear is represented as positive 

and the lateral as negative. During the stance period two peaks can be considered, the first one 

occurs in mid loading response and has a magnitude of approximately 5% of BW (medial shear). After 

the first peak the value starts to decrease to a negative value (lateral shear) of approximately -7% of 

BW in the terminal stance (Perry 1992). 

As a result of the three components, the plot of the GRC vector in a sagittal plane during the stance 

is very characteristic. During the IC event, the high speed of the heel when it contacts the ground 

causes a momentary vertical force without shear, as can be easily observed in Figure 10.(Perry 1992) 

 

Figure 10 – representation of the vector of GRF in sagittal plane during a stride for normal walking(Perry 1992) 

 

The reaction forces are an algebraic summation of all mass-acceleration products of the body 

segments. Particularizing to the anterior-posterior shear and vertical shear (Winter 1990; Perry 1992): 

           
 

 2)  

              

 

 3)  

( 2)  
( 3)  

where mi is the mass of the segment i, axi is the acceleration of the center of mass in the direction of 

progression of the segment i, azi is the acceleration of the center of mass in the vertical direction of the 

segment i and g is the gravity acceleration. As the g and mi are constants during the analysis, the 

value measured in the force plate is a result of variations of the accelerations. For example, for the 

vertical load, if a = 0, this means that the measured value is the BW, if a > 0 the force will be greater 

than the BW and vice-versa. However, the Fz can be constant in some cases; e.g. during the gait, 
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when an arm is accelerating the other is decelerating, thus annulling the force produced. The relation 

between the gait velocity and the GRF is easily explained by these two equations ( 2) and ( 3); when 

the cadence is increased, the segments accelerations are also increased and thus the components of 

GRF will have greater magnitudes (Winter 1990; Perry 1992). 

Center of Pressure (COP) – represents the origin of the GRF vector, and is related to the plantar 

outline of the foot. However, its instantaneous location does not necessarily mean that this portion of 

the foot is the one receiving the greatest pressure. The COP is an average of all forces acting on the 

foot, not necessarily the site of maximum pressure. For example, during the MS, the pressure is 

supported by the heel and the forefoot and the respective COP is situated in an area with no/little 

contact with the ground (Perry 1992). 

The COP is essential for a precise dynamic analysis and provides useful information to detect gait 

pathologies. COP is related with COG and its characterization is important to understand the body 

balance and dynamic postural control. Thus its recording can be used as a measure for 

neuropathological subjects and to develop appropriate corrective orthotics (shoes, insoles, orthosis 

and prosthesis) (Hasan, Robin et al. 1996 b); Jamshidi, Rostami et al. 2010). 

For a non-pathological subject, the IC occurs with the heel, and during this event the COP is 

located approximately in the medial-posterior portion of the heel. With the advance of the stance 

phase, the COP begins to move to the lateral longitudinal arch of the foot. At the FF event, the COP 

has a peak of lateral displacement and then continues towards the forefoot (HO event). Finally the 

COP crosses the forefoot and terminates in I and II metatarsal heads (TO event) (vide Figure 11)  

(Jamshidi, Rostami et al. 2010). 

 

Figure 11- displacement of COP during stance in foot sole 

3.6.2.2. Ground Reaction Force Recording 

The search of scientific methods to measure the reaction forces started with two students of Marey 

– Carlet and Ampar. Although the method just had the capacity to measure one dimension (vertical), 

these authors obtained a typical “m” curve similar to the one obtained with modern force plates. The 

development of these devices have continued, and in the mid-1940s, Elftman presented a force plate 

with the capacity of measuring forces in more than one plan (vertical force and dynamic pressure) 

(Elftman 1934; Sutherland 2005). In our days, essentially two types of force plates can be considered 

(Winter 1990): 

1) Flat plate supported by four triaxial transducers (Kistler force plates) – this type of force 

plates is characterized by four piezoelectric transducers located in its corners (vide Figure 12). 

Kistler force plates output eight channels of force data – four FZ, two FX and two Fy.  
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Representing F00, F0z, Fx0, and Fxz as the vertical forces measured in each transducer, the total 

vertical force is equal to the sum of these four components. It is also possible to estimate the 

COP through these four components, where the x and z coordinates are represented by the 

equations ( 4) and( 5) (Winter 1990): 

 

 
  

 

 
   

                   

  
  

4)  

 
  

 

 
   

                   

  
  

5)  

( 4)  

( 5)  
Equation 1 ( 3) 

 
Figure 12 – Schematic representation of a Kistler force plate  

 

2) Flat plate supported by a pillar (AMTI force plates) – in this case the plate is supported 

by a pillar as represented in Figure 13; a series of transducers measure the three 

orthogonal force components along the X, Y and Z axes as well as the moments on the 

three axis in relation to a central point in the column. The deduction of the COP is 

presented in equations [( 6)-( 11)] (Hasan, Robin et al. 1996 a)): 
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11)  

( 6)  

( 7)  
( 8)  

( 9)  
( 10)  

( 11)  

It is important to have some caution, especially when Fz<2% Body Weight, because small errors in 

the Fz measurement causes large errors in the calculation of the COP (Winter 1990) . 

In order to analyze a complete stride with maximum rigor, it is necessary to use at least three 

plates; each foot should step on only one plate and the whole sole should contact the force plate. To 

minimize the errors, the plates must be securely fastened to prevent slippage and vibrations, and thus 

the force plate montages are often fixed and are not easily adapted to each subject. These two factors 

can restrict the stride for some subjects since they are conditioned to hit the plates (Perry 1992; Fong, 

Chan et al. 2008). 
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Figure 13 – a) representation schematic of AMTI force plate (left) b) AMTI Force plate axes for force and moment 
measurement 

 

To avoid the problems of measuring consecutive steps with no constraint on foot placement, in 

recent years, several research teams have developed algorithms to estimate the ground reaction 

forces and their application point through the record of the pressure distribution under the foot sole. 

The measure of the pressure distribution is easily performed by pressure insoles. It consists of an 

array of pressure sensors spread in an insole. Cordero et al. developed a method to calculate the 

three components of the ground reaction force and obtained results which were very close to the 

expected. Nevertheless, the algorithm needs kinematic data and thus still cannot be used in an 

external environment (Forner Cordero, Koopman et al. 2004). Posteriorly, Fong et al. also developed 

an algorithm to estimate the ground reaction forces. The obtained results are not as good as the 

Cordero’s. However, the method has the advantage of not requiring kinematic data, hence possibly 

used outdoors (Fong, Chan et al. 2008). 

Although the use of pressure insole avoids the problems of constrained foot placement, it presents 

some disadvantages. Fong et al. consider the possibility of a change of the interface between shoe 

sole and the ground for an interface between the mounting frames and the ground, which probably 

cause an alteration in the friction between the contact interface and in the geometry (increasing the 

height and weight of the effective sole).  The limitation of the pressure insole to a determined foot size 

and the high cost of the sensors make this technology expensive and not sufficiently robust to be 

applied in clinical analysis (Fong, Chan et al. 2008). 

The use of pressure platforms also allows the measurement of the GRF components as well as the 

evolution of the COP during the stance phase. The mechanisms are similar to the pressure insole; 

however it is restricted to a laboratory environment (Hall 2003; Fong, Chan et al. 2008). 

3.7. Estimation of Metabolic Costs of Human Gait 

It is essential to understand that walking requires metabolic cost; to perform mechanical work, 

muscles need to spend energy. In some studies is showed that there is a proportional relationship 

between mechanical work and metabolic cost (Hill 1938). 

The human gait is characterized by several complex interactions between the muscular and 

skeletal system, as well as interactions between human body and the ground. These interactions 
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result in a mechanical energy loss, that has to be compensated by controlled muscle actions 

(Donelan, Kram et al. 2002). 

A metabolic energy cost is a measurement off effort required to execute a given task. Two types of 

methods can be considered to perform this measure – experimental and non-experimental. The 

experimental method involves measuring changes in gas concentration during respiration with 

metabolic gas analysis systems or metabolic measurement charts (Waters and Mulroy 1999; 

Macfarlane 2001). The second method recurs to the use of models/algorithms to estimate this value. 

Some simplistic models estimate the metabolic costs as a value proportional to the external work of 

the joints moment, however  erroneous estimations can be done, since this two variables are poorly 

correlated and this model cannot consider the isometric contractions (Schiehlen and Ackermann 

2005). 

Some improvements, like associate models of heat production in the muscles to models of 

musculoskeletal systems, can perform better estimates that the first model referred. An example of 

this model is the work developed by (Anderson and Pandy 2001). Other models, as the (Umberger, 

Gerristen et al. 2003), recurs to the Hill’s model of the muscle and permit predict reliable 

characteristics of human walking with simulation results obtained by dynamic optimization, which 

allows the minimization of the metabolic costs of transport (Schiehlen and Ackermann 2005). 

As already mentioned, the main objective of locomotion is to transport the body with the lowest 

possible metabolic cost. During a steady motion, there two types of work can be considered: 1) 

Positive Work – representing the work done by concentric muscles and is equal to the time integral of 

the mechanical power during the time that the muscle is shortening. 2) Negative Work – which is the 

work done by eccentric muscles and it is also equal to the time integral of the mechanical power, but 

during muscle lengthening (Winter 1991). The muscular efficiency (work divided by the expended 

energy) for this type of motions differs; for a positive work the value is approximately 25% while for a 

negative work the value is approximately -120%. Due to this fact, the body has to expend positive 

energy in motions. However, these conditions do not apply to the complex contractions of walking 

(Donelan, Kram et al. 2002). This fact occurs, because in human walking the muscles maintain a near-

constant length, generating minimal power with minimal energetic cost. The tendons execute a stretch 

recoil cycle, in each step, that generates elastic strain and helps to reduce the energy costs of walking 

(Fukunaga, Kubo et al. 2001). 

Kuo stated that it is relatively easy to quantify the energy expended during a task, because the cost 

is proportional to the positive work of the muscles. However quantify the energy cost needs to 

consider the negative work. The author defended that “the negative work of walking comes from the 

body, not the environment, because the negative work done by aerodynamic drag and friction is 

almost null at normal walking speed” (Kuo 2007). 

Donovan et al. has determined a net metabolic rate (MR) of 150  (MR=0.076)W, to a subject with 

66 Kg walking with a speed of 1.25m.s
-1 

(Donelan, Kram et al. 2002). Note that net metabolic rate is 

considered as the average rate at which metabolic energy is expended and the term net refers to the 

total energy cost subtracting that for the quiet standing (Kuo 2007). 
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3.8. Theories of Human Walking 

During several years, multiple studies have been performed in order to understand gait patterns 

and to quantify its major parameters. The latter include moments and torques in joints, external forces, 

electromyography signs, and so on. However, only in 1953 Saunders et al. proposed the first accepted 

theory for human walking – The six determinants of gait (Saunders, Inman et al. 1953). Years later, 

Cavagna et al. proposed a second theory for human gait with different contours – The inverted 

pendulum model (Cavagna and Margaria 1963; Cavagna and Margaria 1966). 

The theory of inverted pendulum and the theory of six determinants of gait have been accepted 

over the years; however both clash in some aspects. The reason of their acceptance is related to the 

fact that both consider the same objective of reducing energetic cost. 

In recent years, another theory has been developed – dynamic walk. It is an extension of the 

inverted pendulum theory and tries to eliminate some of the problems pointed to the first theory (Kuo 

2007). 

3.8.1. Center of Gravity of the Body 

To better understand the two theories, it is essential to understand the displacement of the COM 

during locomotion. Croskey has determined the COM of the body in its mid line, at a distance from the 

ground corresponding to about 55% of the height of the subject. Thus, the COM occupies a position 

just anterior to the second sacral vertebra (Croskey, Dawson et al. 1922; Saunders, Inman et al. 

1953). 

In non-pathologic gait, the COM describes a smooth regular sinusoidal curve in the plane of 

progression. The COM, during a GC, oscillates twice in the vertical plane and once in the horizontal 

plane, as can be seen in Figure 14.  

 

Figure 14 – the horizontal and vertical displacements of the COM during a gait cycle. The first instant corresponds 
to the IC of one foot and the last instant corresponds to the subsequent IC of the same foot  (Saunders, Inman et 

al. 1953) 

 

The total amount of vertical COM displacement in a normal adult is about 2-2.5 cm. The maximum 

value of vertical displacement occurs at 25% and 75 % of stride period and corresponds to each mid-

stance event of a stride; the height of these peaks is limited by the lateral pelvic tilt (2
nd

 determinant) 

and the knee flexion during the early support phase (3
rd

 determinant). On the other hand the minimum 

value occurs at 0%, 100% and 50% of stride period and corresponds to double support phases. The 
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depth of the troughs is limited by pelvic rotation (1
st
 determinant) and knee-ankle-foot-interactions (4

th
 

and 5
th
 determinant) (Saunders, Inman et al. 1953). 

The value of horizontal displacement is approximately 4.5 cm, measured from the extremes of the 

deviation from right to left. The greatest lateral displacement of the COM occurs at the MS event. The 

amplitude of this lateral displacement is limited by the lateral displacement of the pelvis (6
th
 

determinant) (Saunders, Inman et al. 1953). 

The study of the COM displacement importance lies in the fact that allows relating the gait with the 

energy expenditure. The best way, in terms of energy expenditure is to transport the body in a straight 

line, since according to Newton’s 2ª Law is not necessary to apply forces to accelerate and decelerate 

the COM; however, this is quite impossible to achieve in a bipedal gait. The smooth sinusoidal 

pathway, with a low amplitude may be considered the best viable alternative with least energy 

expenditure. As abrupt changes do not exist, only small forces are necessary to guide the COM along 

the trajectory and hence the energy consumption is lower. This type of translations also permits to 

conserve the mechanical energy due to conversions of potential energy in kinematic energy and vice-

versa (Saunders, Inman et al. 1953). Figure 15 show a summary diagram of the relation between the 

locomotion efficiency and the COM displacement. 

 

Figure 15 – Summary diagram representing the relation between locomotion’s efficiency and the COM 

displacement 

3.8.2. Inverted Pendulum Theory 

The inverted pendulum theory, presented in 1966, proposes that the stance leg acts like a 

pendulum, describing an arc in the plane of progression. This fact helps to understand the less 

metabolic cost of gait. The kinetic energy is converted in potential energy and vice-versa, preserving 

mechanical energy (Cavagna and Margaria 1963; Cavagna and Margaria 1966). 

During single support, the ipsilateral leg acts like an inverted pendulum, conserving the mechanical 

energy, and thus the COM can be supported with no muscle force. The center of mass (COM) velocity 



 

49 
 

is directed perpendicular to the ground reaction force and, as a result no work is performed on the 

COM during the arch trajectory (vide Figure 16) (Kuo, Donelan et al. 2005; Kuo 2007). 

 

Figure 16 – representation of the simple inverted pendulum model of walk (Kuo, Donelan et al. 2005) 

 

The model of the inverted pendulum also considers that the swing leg moves entirely by the action 

of the gravity during the swing phase, behaving like a non-inverted pendulum. The stance leg remains 

at full extension with minimal muscle force – the passive mechanical stop of the leg prevents the 

hyperextension, and it is not necessary to spend energy in the muscles to maintain the leg extended 

(Kuo, Donelan et al. 2005; Kuo 2007). So, if the stance leg acts like an inverted pendulum and the 

swing leg acts as a pendulum, the energy would be conserved in both movements (no work) (Mochon 

and McMahon 1980). However, this fact is a paradox, since normal walking is characterized by energy 

consumption – the efficiency of transference between kinetic and potential energy is not 100% 

efficient, but has instead only a maximum of 70%. One reason is the fact that fluctuations in potential 

and kinetic energy are not matched in magnitude. During a fast walk, it is normal that fluctuations in 

potential energy are smaller than the fluctuations in kinetic energy. Hence, in order to maintain the 

movement an energy expenditure is necessary (Lee and Farley 1998). Kuo suggest that one possible 

explanation is that the stance leg does not behave passively, acting instead as a forced pendulum with 

muscular work performed to accelerate and decelerate it. These are the basic principles of the 

dynamic walking model presented in 3.8.4 (Kuo, Donelan et al. 2005; Kuo 2007). 

3.8.3. Determinants of Gait 

The theory of the six determinants of gait was proposed firstly by Saunders et al. in 1953, after the 

study of the behavior of the center of gravity of the body during gait. It consists of a series of six 

patterns that helps to minimize the displacement of the COM during each GC, so as to achieve a 

smooth sinusoidal trajectory of the COM (vide 3.8.1) (Saunders, Inman et al. 1953). When Saunders 

et al. proposed such theory, the authors did not present a tested hypothesis. However, due to the 

attractive character of the theory, the scientific community has accepted it, and an example of that are 

the several papers citing it. Recently, there has been a concern to validate the theory, although the 

concept of minimizing the displacement of the COM is generally accepted as one the main objectives 

in human walking (Orendurff, Segal et al. 2004). 

3.8.3.1. 1
st

 determinant - Pelvic rotation 

During normal walking, the pelvis rotates alternately in a horizontal plane. It rotates forward on the 

swing side, and then rotates relatively backward during stance. The magnitude of this rotation is 

approximately 8 degrees, 4 degrees to each side of the central axis (Saunders, Inman et al. 1953). 
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The objective of this rotation is to permit a flatten arc of the passage of the COM, since it elevates 

the extremities of that arc. Hence, the forward rotation of the pelvis on the swing side prevents an 

excessive drop in the COM during periods of double limb support; the angles of inflection at the 

successive arcs are less abrupt. Due to this fact the loss of potential energy is not so abrupt, and the 

force required to change the direction of the COM is lower. The pelvic rotation is the mechanism that 

allows the pelvis to rotate over a vertical axis, permitting the advance of the hip that goes into flexion 

and retreat of the hip that goes into extension. Such characteristics reduce the energy expenditure, 

because the angle of extension and flexion at the hip joints needed to step is decreased. The pelvic 

rotation also increases the step length (Saunders, Inman et al. 1953). 

 

Figure 17 – a) representation of pelvic rotation during a swing event (left) b) variation of pelvic rotation angle 
along a stride period (Herr 2009) 

3.8.3.2. 2
nd

 determinant – Lateral Pelvic Tilt (pelvic obliquity) 

In normal walking, during the flexion and extension of the hip joint, the pelvis is tilted in relation to 

the horizontal plane. As can be seen in Figure 18, during swing phase, the pelvis tilts downward to the 

side of the swing leg (positive “trendelenburg”). Pelvic tilt produces a relative adduction on the stance 

leg and a relatively abduction in the swing leg. The average value of this angular displacement is 

approximately 5 degrees. The lateral pelvic tilt during the swing phase associated with the flexion of 

the knee of the swing leg (condition to occur pelvic tilt) prevents an excessive rise of the body’s COM, 

reducing the COM arcs and the energy expended.(Saunders, Inman et al. 1953) 

 

Figure 18 – a) representation of pelvic tilt during the swing phase (left) b) evolution of angular displacement during 
a stride period (Herr 2009) 

3.8.3.3. 3
rd

 Determinant – Knee Flexion during the Stance Phase 

At the end of the swing phase, the knee is fully extended. At the beginning of the stance phase the 

knee begins to flex until FF (approximately 0-10% of stride period) – corresponds to the period of WA. 

After FF the knee joint begins to extend until TO. The maximum value achieved is approximately 20 
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degrees (vide Figure 19 b)). This movement, allows to absorb not only the weight and part of energy 

resulting from the impact of foot with the ground, but also to reduce the vertical displacement of the 

COM (Saunders, Inman et al. 1953). 

 

Figure 19 – a) representation of COM arc and knee arc during stance phase (left) b) evolution of knee angle 
during a stride.  

3.8.3.4.  4
th

 and 5
th

 Determinants – Foot, Ankle and Knee Mechanisms 

The angular displacements of foot and knee during the stance phase are closely related, and 

contribute to minimize the COM displacement, and because of that these two determinants are usually 

considered together (4
th
 – Controlled Plantar flexion and 5

th
 Powered Plantar flexion). Saunders et al. 

consider the existence of two intersecting arcs of rotation during the stance period. The first is defined 

by the rotation of the ankle during the controlled plantar flexion (HC until FF; center of rotation in 

calcaneus; see Figure 20). The second arc is defined by the rotation over the forefoot (FF till TO) and 

corresponds to the powered plantar flexion event (Propulsion). These two arcs, associated with the 

initiation of the knee flexion in the stance leg prevent an abrupt rise of the COM trajectory (Saunders, 

Inman et al. 1953). 

 

Figure 20 –Representation of four instants of the stance phase. In the left figure is represented the first arc, the 
foot is dorsiflexed and the knee is extended. In the second picture the foot is flatted, after the controlled plantar 

flexion. In the right picture is represented the second arc, representing the trajectory of the heel after the powered 
plantar flexion. 

3.8.3.5. 6
th

 Determinant – Lateral Displacement of the Pelvis 

As explained in 3.8.1, the COM is characterized in gait by a sinusoidal displacement in the 

horizontal plane, produced by a relative adduction at the hip and by the horizontal shift of the pelvis. 

However since the two legs are parallel to each other, the horizontal displacement would be 

characterized by relatively high values. To avoid this fact, the existence of a tibiofemoral angle is 

considered, which related the relative adduction, allows the decrease of the value of this displacement 

(approximately 7.5 cm to 4.5 cm). 
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Figure 21 – representation of the lateral displacement COM, a) considering the two limbs parallel (left) b) 
considering a tibiofemoral angle (knees are medial to the hips) and the adduction of the hip (Saunders, Inman et 

al. 1953) 

 

This model is sometimes criticized; although it tries to explain the low energy expenditure, the 

predicted value is more than the double of the estimate for humans (MR=0.18). Some studies cited by 

Kuo also present results with subjects walking with a flatten trajectory, and the obtained WR data also 

shows higher values than those observed for normal gait (Kuo 2007). 

3.10.3.6 Other Determinants 

In a recent study, Herr considered the existence of three other gait determinants (Herr 2009): 

 7
th

 determinant - Inversion-Eversion-Inversion sequence at the subtalar joint – Herr indicates 

the existence of a normal pattern of inversion-eversion-inversion of the foot. This mechanism 

causes the flattening of the longitudinal arch, which helps to absorb the shock during WA. It 

also enables the rotation of the tibia (from IC to FF, the tibia rotates medially (approximately 

10º) and from FF till TO, the tibia rotates laterally approximately 20º). 

 8
th

 determinant – lateral flexion of the trunk – Herr indicates the existence of an ipsilateral 

flexion of the trunk in a coronal plane, which helps to control the angular momentum in the 

anterior-posterior direction. 

 9
th

 determinant – Antero-posterior flexion of the trunk – the author considers that during a GC 

the trunk angle in a sagittal plane varies according to a certain pattern. It has a maximum 

backward flexion at the beginning of the support phase and a maximum forward flexion at IC 

of the contralateral foot. 
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Figure 22 – other gait determinants presented by Herr: a) 7
th
 determinant – representation of the rotation of 

calcaneus on talus (+ eversion, - inversion) b) 8
th
 determinant – lateral displacement of trunk c) 9

th
 determinant – 

antero-posterior flexion of the trunk 

3.8.4. Dynamic Walking 

The idea of dynamic walking was firstly applied in the development of mechanical legs, by McGeer, 

and afterwards applied to human walking. This model is based in the inverted pendulum theory and 

permits to eliminate part of the paradox of the model presented in 3.8.2. The dynamic walking varies 

essentially in the double limb support phases, presenting a model for step-to-step transition, where the 

motion is controlled by passive dynamics of the legs themselves (Kuo 2007). 

The essential principles are based on the fact that the leg acts like a forced pendulum, rather than 

an inverted pendulum. The conservation of the mechanical energy of single support is disturbed by the 

collision of the foot with the ground during the IC. Essentially, the large energy loss is caused by the 

sudden stop of the foot during the impact, although some energy can also be dissipated through noise 

and deformation of the ground. These facts change the velocity of the legs and consequently of the 

COM (Kuo 2007). The COM trajectory, during step-to-step transition, is redirected to a new pendular 

arc (v
-
COM to v

+
COM (see Figure 23 a)). In Figure 23 b) the COM work during double support can be 

observed. The leading leg will perform a negative work and the trailing leg a positive work – the two 

forces are assumed to be directed along the legs. The rate of work is equal to the dot product of force 

and velocity vectors (Kuo, Donelan et al. 2005). 

 

Figure 23 – a) left – schematic diagram of double support: step-to-step transition b) right – representation of the 
double support COM work (Kuo, Donelan et al. 2005) 

 

Then, to maintain the COM velocity constant, it is necessary that the positive work surpasses the 

negative work. The negative work performed by the leading leg and the positive work performed by 
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trailing leg are proportional to the difference in squared velocities, as can be seen in equations ( 12) 

and ( 13) (Kuo, Donelan et al. 2005). 

 
       

 

 
      

          
12)  

 
       

 

 
      

           
13)  

( 12)  

( 13)  

Step-to-step transition is optimal when the magnitude of negative work (collision) and the 

magnitude of positive work (PO) have the same value and short duration (see Figure 24 a)); in this 

case, the amount of work (positive and negative) is minimized and the velocity of the COM will be 

maintained (no energy expenditure is necessary during single support). Other two cases can occur, in 

Figure 24 b) is represented the case when the magnitude of negative work is smaller than the positive 

work, which causes the velocity of the COM to decrease in order to avoid the necessity of an energy 

expenditure for performing a positive work during single support. The last case occurs when the 

magnitude of positive work is greater than negative work; in this case, negative work is required, so as 

to decrease the velocity of the pendulum (Kuo, Donelan et al. 2005). 

 

Figure 24 – geometric diagram of COM velocity redirection of step-to-step model. a) Represents the optimal case, 
when the positive work (PO) is equal to negative work (collision) (left)) b) represents the case when the 

magnitude of negative work is greater than positive work, in this case the next step will start with a smaller 
velocity (middle) c) represents the case, when the magnitude of negative work is smaller than positive work, in 
this case it will be necessary spend more energy to decelerate the pendulum and maintain the velocity (Kuo, 

Donelan et al. 2005).  

 

 During step-step transitions, the value obtained for the work is considerately smaller than that 

predicted by the six determinants theory, and has a value of MR similar to the obtained for human 

walking (Kuo 2007). This model also gives an explanation to understand other parameters of gait like 

step length, width and frequency. As can be seen in Figure 25 a), for the same step frequency, if the 

step length increases, the magnitude of positive work also increases (more expenditure of energy 

during the PO). Such need to increase the positive work is the result of greater speed of the COM, as 

well as of a larger angle of redirection (more work is needed to change the velocity direction).  In 

Figure 25 b) is represented the effect of the step width on PO work. For the same frequency and step 

length, the increase of the step width results in more positive work done during PO. Although the 

major responsible for the loss of energy in collision is the velocity, the magnitude of this effect has a 

smaller contribution. This fact can be observed in Figure 25 c), where the predicted work rate is 

showed in function of the step length and the step width  (Kuo, Donelan et al. 2005). 
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Figure 25 – Variation on COM work, during step-to-step transition, by changing: a) step length (above) b) step 
width (below left) c) predicted work rate for both variables (Kuo, Donelan et al. 2005). 

3.8.5. Comparisons between presented Models (Revision) 

The main objective of these three theories is to explain the expenditure of energy during gait. 

However, these theories present contradictions. The six determinants of gait are based in the premise 

that the COM displacement is energetically costly. On the other hand, the inverted pendulum theory 

defends that the stance leg acting like an inverted pendulum is more energetically economic 

(Saunders, Inman et al. 1953; Cavagna and Margaria 1963). 

The six determinants gait have been generally accepted, even though this theory does not present 

experimental validation (Orendurff, Segal et al. 2004). The predicted metabolic rate is much higher 

than the observed in normal gait and some studies show that walking with a flatter COM trajectory 

implies higher expenditure energy (Kuo 2007). 

Della Croce et al. have proposed a new vision of gait’s determinants, they proved that the three 

first gait determinants are the most important mechanisms in reducing the vertical displacement of 

COM (Della Croce U, Riley P.O. et al. 2001). They also proved the idea presented by Gard and 

Childress that the effect of pelvic list in the displacement of the COM is less significant than the one 

presented by Saunders et al. (2-4 mm) (Gard and Childress 1997). Gard and Childress have also 

studied the 3
rd

 determinant and showed that the knee flexion during stance phase reduces only a few 

millimeters. The authors advocate that the first goal of this and the 2
nd

 determinant is not reducing the 

COM displacement, but instead they are a result of a mechanism of shock absorption that occurs in 

the loading response phase (Gard and Childress 1996; Gard and Childress 2001). Gard and Childress 

consider that these two determinants have low or no effect, because the timing in which these occur in 

the gait cycle is not ideal to reduce the vertical displacement of COM. They defend that the 

parameters that have significant influence in the trajectory of the COM are the leg length, foot rocker 

radius and step length (Gard and Childress 2001). 

To Della Croce, the role of heel rise (4
th
 and 5

th
 determinant) has been considered the principal 

main pattern of movement that reduces the COM vertical displacement. In Figure 26 the results of the 

contribution of the gait determinants to the COM vertical displacement can be consulted, using the two 

models presented by the Della Croce et al. The authors also showed that, when the COM is at its 
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maximum height, the leg inclination has an important role in reducing the COM vertical displacement 

(Della Croce U, Riley P.O. et al. 2001). 

 

Figure 26 – Average isolated contributions of gait determinants using two models presented by Della Croce 
((Della Croce U, Riley P.O. et al. 2001) 

 

Although the inverted pendulum theory also has been criticized, several models have been 

proposed to resolve some of the problems found. An example of those models is the model of 

dynamic walk. 
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Chapter IV 

4. Pathologic Gait 

 

 

The twentieth century, particularly its second half, was marked by a great number of studies of 

normal and pathological gait. The evolution of technology allowed the development of accurate and 

fast methods that calculate kinematic and kinetic parameters for a given subject. Thus, it made 

possible the creation of biomechanic laboratories specialized in the study of normal and abnormal gait. 

As a result, several papers can be found which describe the patterns of normal and abnormal gait in 

different diseases. 

A large number of diseases origins gait patterns variations, e.g. cerebral palsy, Spina bifida, 

neuromuscular diseases. Essentially, these variations are related with: a) Osseous deformations – 

congenital, traumatic, metabolic, etc. b) Neurological diseases – sensory, motor, spastic, paralytic, etc. 

c) Muscles/Soft tissues deformations – contractures, fibrosis, metabolic, etc. d) Functional diseases – 

neuromuscular, lack of coordination, etc. (Fauci, Kasper et al. 2008). 

As mentioned before, there are a large number of diseases that cause abnormalities in gait and 

enumerate them all would be an arduous task. Therefore, in this thesis the option was put is 

presenting only the clinical terms used in gait analysis, which describe the observed deviations. 

4.1. Gait Abnormalities related with Neurological pathologies 

Apraxia Gait – in order to understand the apraxia gait is necessary to understand the definition of 

Apraxia. Apraxia can be described as the “inability to perform certain subjectively purposive 

movements or movement complexes with conservation of mobility, of sensation and of coordination”. 

Therefore the term “gait apraxia” is generally used in subjects that present abnormal gait not based on 

upper or lower neuronal lesion or impaired coordination. Apraxia gait is characterized by strange leg 

and trunk movements, resulting in an ineffective propulsion (Tyrrell 1994; Della Sala, Spinnler et al. 

2004). 

Ataxia – designates a disabling symptom common in many neurological diseases, which results in 

the lack of coordination between muscles’ movements. Essentially, three causes for ataxia can be 

considered that result in different gait abnormalities: a) cerebellar ataxia – dysfunction of the 

cerebellum b) spinal/sensory ataxia –damages on the spine or brainstem c) vestibular disease – 

dysfunction of vestibular system.  
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Cerebellar Ataxic Gait – Descriptions of cerebellar ataxic gait include unsteady irregular gait, 

difficulties in controlling body balance, irregular steps and a wide base of walking. Moreover other 

kinematic parameters are affecting resulting in a reduced cadency, step and stride length, delays in 

some events (HO, TO, peak flexion during swing phase) and reduced range of motion of ankle, knee 

and hip (Palliyath, Hallett et al. 1998; Stolze, Klebe et al. 2002). Mitoma et al. observed significant 

differences in EMG patterns for patients suffering from cerebellar ataxia. These differences included 

high activity of triceps surae and tibialis anterior in some periods that in normal EMG pattern are not 

observed, as well as the ratio ΔEMG/Δangle presented higher values for these muscles during the 

dorsiflexion and plantar flexion. The same author also observed significant differences in the pattern of 

GRF and COP (Mitoma, Hayashi et al. 2000). 

Sensory Ataxic Gait /Stomping gait – is characterized by a unsteady broad base march with foot 

slap at foot contact, with the subject having a tendency to look at this feet, as well as a postural 

instability caused by the loss of proprioception (sensitivity to the position of body segments) (DeLisa 

and Kerrigan 1998). 

Hemiplegic Gait – is a common symptom in the subjects suffering from Hemiplegia – total 

paralysis of leg, trunk and arm of the same side. This is generally caused by strokes in elderly, 

although it can also appear in children having, in this case, no identifiable cause. Visually, the 

hemiplegic gait is characterized by an abnormal swing of the arm, which is flexed, adducted and 

internally rotated; at the lower limb level, the hip is internally rotated, the knee is in extension and the 

ankle/foot is plantar flexed and in inversion. While walking the subject tends to sustain the BW on the 

side not affected, at the same time as drags his affected leg in a semicircle to allow the toe clearance 

– circumduction. The analysis of time-distance parameters is characterized by an asymmetry in stride 

length and step period, a decrease of the step length and an increase of swing period of the affected 

leg. The velocity, cadence and stride length are also reduced (DeLisa and Kerrigan 1998; Pizzi, 

Carlucci et al. 2007). Kinematically, the absence of knee flexion during swing phase is compensated 

by several mechanisms such as a hip hiking of the stance phase side (ipsilateral raise of the pelvis), a 

decreasing on lateral shift of the affected side or a genu recurvatum of the affected knee (pathology 

characterized by a hyperextension of the knee) (DeLisa and Kerrigan 1998). 

Magnetic Gait – is an abnormal gait associated with the most severe cases of normal pressure 

hydrocephalus. Visually, this type of gait is characterized by a difficult in initiating the swing phase, as 

if the foot would be magnetically attached to the floor. Other characteristics are the reduced velocity 

and stride length, slow movements of lower extremities, postural instability and frequent falls 

(Vanneste 2000; Lee, Yong et al. 2005). 

Parkinsonian/Festinating Gait – refers to the typical gait characteristics on subjects suffering 

from parking disease. Visually, this type of gait is characterized by a shuffling gait with small steps, an 

anterior flexion of the trunk and lower angular amplitude of movements of the joints (Knutsson 1972). 

Significant differences were observed in time-distance parameters, such as lower values of speed, 

and stride length or higher values of stride period and cadence (Morris, Iansek et al. 1996; Cho, Chao 

et al. 2009). Hughes et al. observed abnormalities on foot strike, as that contact is not as usually made 

with the heel. In fact parkinsonian gait is characterized by a flat foot strike or, in some cases, the strike 
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is performed with the forefoot (Hughes, Bowes et al. 1990). Mitoma et al. also studied the differences 

between EMG and GRF for subjects suffering from Parkinson disease and non-pathological patients. 

It was observed a lower maximum activity of triceps surae and tibialis anterior muscles, as well as 

differences in the pattern of GRF and COP (Mitoma, Hayashi et al. 2000). At last, Cioni et al. observed 

a prolonged activation of quadriceps and hamstrings during the stance phase (Cioni, Richards et al. 

1997). 

Propulsive Gait – is a gait disturbance common in the festinating gait. In order to avoid a forward 

fall, during walking, the steps become faster and faster being followed by a decrease in steps’ length.  

Spastic Gait – is characterized by an unbalanced muscle action of certain muscles, the legs are 

held together moving in a stiff manner. Other observed symptom is the scissor gait. In order to help 

maintaining the body balance, this type of gait is associated with tiptoeing, as well as with a great 

effort to perform the swing of the leg, resulting in an unsteady and fatiguing gait. In some cases, it may 

be observed an increasing of tone and spasticity of muscles. The kinetic and electromyographic 

analysis show important differences, especially at the knee joint. The foot contact is done with lateral 

aspect of foot (DeLisa and Kerrigan 1998; Lin, Guo et al. 2000). 

Scissor Gait – is a symptom typical found in subjects suffering from spastic cerebral palsy. This 

name comes from how subjects walk as they cross the legs similarly to the mechanism of a scissor. It 

is characterized by a flexion of the knee and an excessive adduction of the leg during swing, which 

gives the idea of a crouched gait. Other modifications such as rigidity, internal rotation of the hip and 

equinus or equinovalgus foot are also observed (Yokochi 2001). 

4.2. Gait Abnormalities related with Isolated Motor Weakness 

Hip extensor gait (gluteus maximus lurch) – as mentioned in chapter II, the Gluteus maximus is 

the principal hip extensor, helping to stabilize the trunk, which avoids its forward falling. In the 

pathological cases in which exists a weakness of this muscle, the hip is supported by the iliofemoral 

ligament. This type of abnormal gait is characterized by a posterior trunk and arms deviation after the 

IC of the affected side, in order to maintain the GRF vector behind hip which locks the hip extension 

(Õunpuu 1994; DeLisa and Kerrigan 1998). 

Hip flexor gait – is characterized by a marked limp that starts with the beginning of PO event and 

continues through the swing phase of the affected side. Visually, a posterior and lateral (affected side) 

flexion of the trunk is observed from PO till MSw, resulting in the locking of hip joint. The inertia 

generated by these compensative mechanisms leads to a swing of the affected leg. However, an 

asymmetry in step length is observed, being clearly lower in the affected side than in the not affected 

side (DeLisa and Kerrigan 1998). 

Quadriceps Gait – is the typical march observed in individuals with quadriceps (knee flexors) 

weakness. In order to avoid the flexion of the knee after IC, this joint is in hyperextension (genu 

recurvatum) by action of Gluteus maximus and Soleus which extend, respectively, the femur and the 

tibia. As result of these compensatory mechanisms the trunk is forward flexed and a knee extension 

moment is generated. A placement of the hand in thigh can also be observed in some patients, in 

order to help maintain the extension of knee (DeLisa and Kerrigan 1998). 
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Steppage gait/Drop Foot – is the characteristic gait in subjects, which suffer from drop foot (the 

incapability or the difficulty to perform a dorsiflexion and a subtalar eversion caused by neuromuscular 

lesions). The gait patterns are characterized by a toe catch, pelvic shift and a higher elevation of the 

swing leg, in order to avoid the foot hitting the ground during swing phase. These mechanisms are 

achieved by an increased flexion of the knee and hip. A lateral flexion of the trunk in the opposite 

direction of the swing leg can also be observed, aiming to maintain the body balance (Sabir and Lytlle 

1984; Don, Serrao et al. 2007). Significant differences can be observed in the time-distance 

parameters, such as an increase of stride time, step width, and a decrease in step length, swing 

velocity and kinetic parameters (Don, Serrao et al. 2007). 

Trendelenburg Gait (Gluteus medius) – is a type of gait observed in individuals suffering for 

neuropathies or closed head traumas. It is caused by a weakness on the abductor muscles of hip – 

Gluteus medius, causing the hip drop on the opposite side to the abnormal muscle.  Visually, this type 

of gait is characterized by a marked limp, a lateral inclination of the trunk and a drop of shoulder over 

the affected side. These mechanisms are performed with the intention of maintain the COM over the 

hip, which results in a decrease of the force required to stabilize the hip. Since the affected leg 

becomes “functionally longer”, increases on knee and hip flexions and the ankle dorsiflexion are 

observed to allow the toe clearance. These compensative mechanisms can lead to a development of 

other pathologies in the knee and ankle joints over a period of years (DeLisa and Kerrigan 1998; 

Petrofsky 2001 a); Petrofsky 2001 b)). 

Triceps Surae weakness – results from difficulty in controlling the ankle dorsiflexion. The HO of 

affected side is delayed and the PO is shortened. These deviations result in a lag of forward 

movement of pelvis on the not affected side at IC and on the affected side during PO. As a result, 

differences in time-distance and kinetic parameters are observed, such as a shortening of the step 

length on the not affected side and a flexion moment behind the knee that can result in other 

pathologies in this joint (DeLisa and Kerrigan 1998). 

Waddling/Myopathic Gait – in this type of gait an excessive alternation of lateral trunk movements 

is observed, which is followed by an exaggerated elevation of the hip. It occurs in subjects suffering 

from gluteus muscles weakness. Visually, this type of gait presents similarities with gait of ducks and 

penguins. 

4.3. Gait Abnormalities related with Musculoskeletal Pathologies 

Antalgic Gait – is a clinical term used to designate a limp adopted by a patient with the objective to 

avoid pain caused by weight-bearing. As a result the stance period is shortened and the cadency is 

increased (with quick, short and soft steps).  

Hip pathology (pain) – This gait is a type of antalgic gait characterized by several mechanisms 

that avoid the weight-bearing on the affected side: during the stance phase of the affected side, which 

is shortened, the trunk is flexed toward the side of lesion in order to bring the COM over the joint, 

decreasing the mechanical stress and consequently the pain in this joint. During the swing phase, the 

hip from the affected side is slightly flexed, abducted and externally rotated, relaxing the ligaments to 

decrease the joint tension (DeLisa and Kerrigan 1998). 
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Hip pathology/Coxalgic gait (Osteoarthritis) – The gait of subjects suffering from osteoarthritis is 

characterized by a decrease on hip range movements, especially an internal rotation and a flexion of 

hip. An abnormal movement of trunk is observed along with a compensation by the other joints, such 

as hip hiking on the no affected side and tiptoeing on the affected side (DeLisa and Kerrigan 1998). 

Knee pathology (pain) – results in a typical antalgic gait, which is characterized by a slight flexion 

of the knee during the entire gait cycle. 

Knee pathology (ligamentous instability) – the gait patterns varies with the injured knee 

ligament. The most common abnormality observed is the genu recurvatum – a hyperextension of knee 

caused by the excessive ligamentous laxity. This abnormality is commonly observed in stance phase, 

and its correction is essential to avoid future degenerative changes in this articulation.  

Knee pathology (contracture) – The typical gait of subjects suffering from knee contracture 

presents symptoms similar to those observed in short leg limp, both toe walking on the affected side 

and steppage gait and hip hiking on the no affected side are examples of these deviations. 

 Ankle-foot pathology (pain) – is also characterized by an antalgic gait. The contact of foot with 

the ground during the stance phase varies with the location of the lesion, e.g. subjects with lesions in 

forefoot tends to reduce the plantar flexion during PO, while subjects suffering from lesions in the heel 

zone tend to walk with a tiptoeing gait (IC is done with the toes). Generally, these abnormal deviations 

results in shortened stride length and compensative mechanism of the no affected side. 

Ankle-foot pathology (ankle instability) – subjects suffering from ankle instabilities also present 

a antalgic gait, due to difficulties in performing the WA (the instability of ankle leads to a buckling of 

the ankle) 

Ankle-foot pathology (contracture) – the gait pattern for subjects suffering from contractures of 

ankle varies with the muscle affected, the most usual being the triceps surae muscle or heel cord. For 

this pathology the subjects’ gait is characterized by a steppage gait. 

Leg-Length discrepancy – although the leg length discrepancy can have different causes 

(contractures of hip, knee and ankle, or asymmetries in the length of the femur, tibia and hip), the gait 

patterns are similar, varying with the value of leg discrepancy. Leg-length discrepancies lower than 

2.33 cm do not present compensatory deviations. To higher discrepancies, the gait patterns are 

characterized by an equimus position of ankle (tiptoeing) and an increase of the knee extension of the 

short leg. Moreover, are also observed an increased flexion and circumduction of the long limb, a 

higher vertical displacement of COM and a higher pelvic obliquity with pelvic drop  (Liu, Fabry et al. 

1998; Walsh, Connolly et al. 2000). 

Kinetically, some authors observed an increase in the magnitude of GRF, in energy consumed and 

in kinetic energy of lower limbs, where other authors present results that are similar with the normal 

patterns until 6cm of difference (Gurney 2002). 

Pigeon-toed/In-toe Gait – is a characteristic gait where the subjects walk with forefoot adduction. 

This condition is one of the most common problems in childhood, but it is rarely observed in older 

children or adults. This disturbance is caused by postural disorders of lower limbs, such as an internal 

femoral rotation, internal tibial torsion, a metatarsus adductus and rothbarts foot (Accardo 1975; 

Thackeray and Beeson 1996)  
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Chapter V 

5. Kinematic and Kinetic Analysis 

 

 

The simple visual analysis of motion only allows the identification of few gait parameters. In order 

to comprehend all the mechanisms of gait and develop robust routines to detect gait pathologies, it is 

essential perform a kinematic and kinetic analysis (Sutherland, Olshen et al. 1980). 

Kinematics is defined as the study of the movement of bodies and systems without considering the 

forces causing such motion; a kinematic simulation is of purely geometrical nature and provides the 

solution for entire the range of motion of the multibody movement. This solution allows, for a given set 

of considered points, the study of the trajectories, the calculation of joint angles and analysis of the 

velocity and acceleration (Sutherland, Olshen et al. 1980; De Jalon and Bayo 1994). 

Kinetics/dynamics is the term used to study the relation between the motion and its causes – forces 

and moments of force (torque). The premise behind a kinetic/dynamic problem is to understand the 

action of these forces and torques in the multibody system and its inertial characteristics – mass, 

inertia and COM position. Several different dynamic problems can be considered. However, for the 

study of gait, generally two types of simulations are used – forward dynamic analysis and inverse 

dynamic analysis (De Jalon and Bayo 1994). 

The forward dynamic problem permits simulating the motion of a multibody system, when a set of 

known forces and moments is applied. Such problems are used to simulate the evolution of a system 

over a given time interval (De Jalon and Bayo 1994). 

On the other hand, the inverse dynamic problem allows calculating the forces and torques that 

produce a specific motion. The problem requires the position, velocity and acceleration of the systems 

and all the external forces applied. This type of problem is frequently applied in gait analysis, since the 

motion and external forces can be measured (vide 3.6.2). The velocity and the acceleration of body 

parts can be calculated by kinematic analysis, while the external forces can be obtained by direct 

acquisition of GRFs (Silva 2003). 

Before understanding all the concepts behind the kinematic and dynamic analysis, it is necessary 

to define what is meant by a multibody system. The formulation in multibody dynamics is based in the 

description of (De Jalon and Bayo 1994; Silva 2003; Ambrósio and Silva 2005). The multibody system 

is used to simulate the kinematic and dynamic behavior of a system; it is defined as a set of rigid 

bodies interconnected by kinematic pairs (joints), which allow a relative movement between them, and 
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are in turn acted by external forces. The complexity of the movement is related with the number of 

degrees of freedom (DOF) allowed at the joint. 

5.1. Fully Cartesian coordinates 

The first aspect to be addressed is the type of approach to the multibody system problem, firstly 

regarding number of dimensions to be considered – either two or three dimensions. The main 

difference between these approaches relies in the variety of joints, as these increases and allows 

more than one DOF. The 3D model also requires the introduction of a relative coordinate for each 

DOF. Relative coordinates define the position of a given element, relating it with the others adjacent 

elements.  

The adoption of fully Cartesian coordinates implies that the position and orientation of a rigid body 

in the 3D space are represented using the Cartesian coordinates of a set of points and unit vectors. 

Typically, for a better definition of the multibody system, these points are located strategically in joints 

and extremities of rigid bodies and the unit vectors are used to define rotational and direction axes of 

joints. This definition avoids the necessity to introduce angular variables since these are implicit in the 

model (vide Figure 27). 

 

Figure 27 – Schematic representation of a mechanical system with fully Cartesian coordinates: a) the two rigid 
bodies are assembled sharing the point i and the vector u (left) b) the same mechanical system of a), however 
defining the revolute joint with independent points i and m and independent vectors u and v (right) (Silva 2003) 

 

Figure 27 represents two models for the formulation of a mechanical system. On the left, a revolute 

joint is defined by sharing a point and a unit vector, which reduces both the number of coordinates 

necessary to define the model and the number of algebraic equations (since the kinematic relations 

used to define the system’s topology (joint) are implicit). This fact brings computational advantages to 

the kinematic analysis. However, if the objective consists of a dynamic analysis, this model cannot be 

used, since it does not yield the internal reaction forces in joints (there is no explicit information on 

how to describe the kinematic pairs).  Such problem no longer occurs with the model in Figure 27 on 

the right, in which an explicit system is used to define the kinematic pairs. Due to this fact, the explicit 

system must be used to define kinematic pairs in which the internal reaction forces are needed. 

The fully Cartesian coordinates of a general mechanical system are represented as a vector q. It 

contains the Cartesian coordinates for every point and every unit vector considered in the definition of 

the system. The vector q is designated as the vector of generalized coordinates, which is an 
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alternative name for the Cartesian coordinates, as these define the configuration of the system in a 

unique way at any instant. 

                                             
 
 14)  

( 14)  

where P refers to a point and V to a vector. x, y and z represent the coordinates of a point or the 

components of a vector in the three Cartesian directions. n and m represent respectively the total 

number of points and vectors considered in the definition of the mechanical model.  

In a multibody formulation with fully Cartesian coordinates, the generalized coordinates of a vector 

q are dependent, as they are related by algebraic expressions defining the topology of the problem. 

These expressions, usually called kinematic constraints, define the proprieties of the joints, rigid 

bodies and the driver actuators of the system (vide section 5.3). The presented model is holonomic, as 

all kinematic constraints of the system are holonomic. i.e., they only depend on the coordinates and 

the time variable t. The holonomic constraints are considered scleronomic when the kinematic 

constraints do not include time as an explicit variable (the position does not depend explicitly on time; 

used to define rigid body proprieties and to define joints), and rheonomic otherwise (used to guide the 

rigid bodies – driving actuators). 

The vector of kinematic constraints ( ) is represented by the following expression: 

                                             
    15)  

( 15)  

where    represents the i
th
 kinematic constraint. ns and nr represents respectively the number of 

scleronomic constraints and the number of rheonomic constraints. 

5.2. Kinematic Analysis 

As previously referred, kinematic analysis allows obtaining the position, velocity and acceleration of 

every element of the mechanical system. This information is useful in the context of gait analysis, 

since some of the gait patterns are related with velocities and accelerations of body members and 

these results represent inputs for the inverse dynamic analysis.  

To obtain kinematic consistent positions (the positions that satisfy the equation of kinematic 

constraints), it would be necessary to solve the equation ( 15). However, their non-linear behavior 

requires the use of numerical methods, such as the Newton-Raphson method (NR). The results 

obtained with this method present a quadratic convergence in the neighborhood of the solution, i.e. 

the error in each iteration is proportional to the square of the error in the previous iteration. The NR 

method is based on the linearization of equation ( 15) – the equation of kinematic constraint is 

replaced by the first two terms of its expansion in Taylor series, evaluated around an initial 

approximation of the solution q. Thus, for the instant t, the application of the NR results in:  

                               16)  
( 16)  

where        represents the Jacobian matrix of the constraints, composed of the partial derivatives of 

each kinematic constraint with respect to the generalized coordinates vector (nh is the number of 

constraint equations and nc the number of dependent coordinates). 
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17)  

( 17)  

The system defined by equation ( 16) allows obtaining an approximation of the solution in ( 15). 

Considering this approximation as qi+1, a recursive equation is formulated: 

                         18)  
( 18)  

Considering to            , as the residual for the current iteration, equation ( 12) becomes: 

                  19)  
( 19)  

The iterative equation ( 19) is applied repeatedly until the norm of     reaches a tolerance value 

defined by the user. 

To calculate the velocity of each element of the system, the velocity constraint equations are used, 

obtained through derivation of equation ( 15) with respect to time: 

 
           

       

  
 
       

  
 
       

  

  

  
   

20)  

( 20)  

where  
       

  
 represents the vector of partial derivatives of the constraints with respect to time, 

       

  
 

is the Jacobian matrix of constraints (equation ( 17)) and the term 
  

  
 is the vector of generalized 

velocities (containing the velocities of each point and unit vectors that define the mechanical system), 

also represented as   . Defining the vector v(t) as the right-hand-side of the velocity equation, equation 

( 20) can be rewritten as: 

 
      

  

  
   

21)  

( 21)  

The steps to calculate the vector of generalized acceleration (containing the acceleration of each 

point and unit vector that define the mechanical system) are similar to the ones used for velocity 

analysis. The velocity constraint equations (equation ( 21)) are derived with respect to time obtaining: 

 
              

           

  
             

        
22)  

( 22)  

where    represents the vector of partial derivatives of   with respect to time. Defining the vector 

          as the right-hand-side of the acceleration equation, the previous equation can be rewritten 

as: 

                
     23)  

( 23)  

In some mechanical systems, problems related with linear dependence in the lines of the Jacobian 

matrix may cause difficulties in calculating q. Usually, these problems are originated by the formulation 

of redundant constraint equations (constraint equations with the same topological information). Some 
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methods had been developed to circumvent this; the least-squares formulation is an example (used in 

Apollo software) and its application in equation ( 15) results in the following expression: 

   
                  

           24)  
( 24)  

5.3. Definition of Constraint Equations 

To define mechanical systems, several kinematic constraint equations can be considered. In this 

section only the constraints with interest in this type of analysis will be presented. Essentially, one can 

consider three groups: 1) Rigid body constraints – permit defining and maintaining the proprieties of 

the elements in analysis. 2) Joint constraints – define the kinematic pairs and the topology of the 

mechanism. 3) Driver constraints –control the movement of the elements of the system. 

5.3.1. Rigid body constraints and rotational driver constraints 

The rigid body constraints are used to define and preserve proprieties of rigid bodies. If the element 

is defined with fully Cartesian coordinates (a set of points and unit vectors), this type of constraints is 

based in the maintenance of the distance between two points of the element or/and the preservation 

of the angle between two vectors. The number of expressions necessary to define correctly these 

constraints is equal to the difference between the number of Cartesian coordinates used to define the 

element and the number of DOF. For instance, considering the humerus (Figure 27 b)) as a rigid body 

defined by two basic points and two unit vectors, the number of constraint equations needed to its 

characterization is six: 12 Cartesian coordinates and 6 DOF (3 rotations in turn of the spatial frame 

axes and 3 translations in the direction of the spatial frame axes). In Figure 28 is represented an 

element defined with these characteristics. The six constraint conditions are: one constant distance 

between i and j, three constant angle conditions (between u and rij, v and rij and u and v) and two unit 

vector module conditions (u and v). 

 

Figure 28 – Element defined with two basic points and two unit vectors 

 

The rotational drivers are rheonomic constraints that allow the control of the angular movement of 

two articulated elements during the time of analysis. Usually, this type of element is used in joints to 

describe the angle formed by two bones (two rigid bodies). 

These constraints, as several others (vide Table 1), can be defined by a generic expression that 

relates two vectors by means of the scalar product: 

                                  25)  
( 25)  

where u and v are two generic vectors,   and   are their norms and          is the angle between 

them. 
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Table 1 – applications of the scalar product constraint. ri, rj, rk and rl represent the Cartesian coordinates of points 
i, j, k and l, a and b are the unit vectors used to define the rigid bodies. (Silva 2003) 

 

Due to the quadratic dependency on the generalized coordinates, the contribution of the scalar 

product constraint to the Jacobian matrix is linear: 

 
  

   
      

  
                  

26)  

( 26)  

Applying the equations ( 21) and ( 23) in ( 25) results that the contribution of the scalar product 

constraint to the right-hand side of the velocity and acceleration are, respectively: 

 
                         

         

  
 

27)  

 
                           

         

  
 

 

              
          

   
           

28)  

( 27)  

( 28)  

Although most rigid bodies can be defined by the formulation presented, when the elements have 

complex forms it is necessary to recur to other types of rigid body formulations, which are beyond the 

scope of this thesis (Silva). 
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5.3.2. Joint Constraints 

The joint constraints are used to define kinematic pairs and enable the relative movement between 

their elements. These vary according to the DOF permitted and, consequently, their formulations will 

be different, depending if the joint is spherical, revolute, universal, prismatic, and so on. Essentially, 

the first three joints types are enough to define biomechanical models of interest in gait, which is why 

these will be elaborated along the following sections. 

5.3.2.1. Spherical Joint 

The spherical joint is used to define socket ball joint (hip and shoulder) and only enable three 

DOFS (the three rotations). When a shared point is used to define a spherical joint, it is not necessary 

to generate a constraint equation, because this is implicitly defined, i.e. when two elements share the 

same point, the only motion that is enabled is the rotation around this point. 

On the other hand, if an explicit definition of joints is used (hip case), it is necessary to generate a 

constraint equation that ensures the union of the two points defining it. Considering m and n these 

points, and rn and rm their position vector, the constraint equation for spherical joint is given by: 

                 29)  
( 29)  

5.3.2.2. Revolute joint 

The revolute joint enables only one rotation between two rigid bodies, i.e. it restrains three 

translations and two rotations. It is used to define hinge joints as the elbow or knee. 

If the two rigid bodies, defining the joint share a basic point and a unit vector (Figure 27a)), the 

revolution joint is automatically defined. However, if an explicit model is used (Figure 27b)), it is 

necessary to generate two sets of constraint equations. The first ensures that the two points share the 

same spatial position (according to ( 29)). The other set considers that the two unit vectors that define 

the two elements have the same spatial components. Using the notation of Figure 27b), the second 

set of constraint becomes: 

               30)  
( 30)  

5.3.2.3. Universal Joint 

The universal joint, also called cardan joint, restricts four DOF, enabling only two rotations around 

two orthogonal vectors. In the adopted biomechanical model, this joint is used in the definition of the 

ankle (see Figure 29). 

 

Figure 29 – representation of the ankle joint using a universal joint. u is the unit vector that defines the foot (3 
basic points and 1 unit vector) and w  is one of the two unit vectors that define the leg (2 basic points and 2unit 

vectors) (Silva 2003). 
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Using the notation of Figure 29, the point i can be shared by the two elements – foot and leg. In this 

case, it is only necessary to generate an expression that guarantees the orthogonality between w and 

u (vide Table 1). If the joint is defined explicitly, an additional constraint equation must be considered, 

in order to ensure that the two points that define the kinematic pair share the same spatial position (as 

in ( 29)). 

5.4. Dynamic Analysis 

5.4.1. The principle of virtual power 

The starting point of this analysis is to deduce the equations for motion to a multibody system; 

although Jalon and Bayo present several different ways of obtaining them, in this work only the 

formulation deduced by the principle of virtual power will be presented. Such principle states that the 

sum of the virtual power produced by the external and inertial forces in the system to each instant is 

zero. Considering nc the number of generalized coordinates the principle can be formulated as: 

 
         

 

  

   

    
      

31)  

( 31)  

where    
 is the virtual velocity vector that represents a set of imaginary velocities and is consistent with 

the homogeneous form of the velocity constraint equations at a stationary time: 

   
       32)  

( 32)  

f is the vector of all the forces that produce virtual power (external and inertial forces), and it is defined 

as: 

         33)  
( 33)  

where     is the vector of inertial forces (M represents the global mass matrix and    the vector of 

generalized accelerations) and g is the vector of generalized forces, which includes the external forces 

and the velocity-dependent inertial forces (centrifugal and Coriolis forces). In vector f, the internal 

forces associated to kinematic constraints are not included, since these do not produce virtual power 

because they exist in action/reaction pairs. Thus, to calculate these internal forces, it is necessary to 

make use of the Lagrange multipliers method: 

      
   34)  

( 34)  

where    represents the generalized force vector that contains the internal constraint forces and   is 

the vector of Lagrange multipliers. The columns of the Jacobian matrix indicate the direction of the 

internal forces vector, while the Lagrange multipliers correspond to its magnitude. Considering 

equations ( 33) and ( 34) associated to the fact that internal constraint forces do not produce virtual 

power, the equation can be formulated as: 

       
           

      35)  
( 35)  

5.4.2. Equations of Motion 

Equation ( 35) can be rewritten, resulting in the equations of motion of a constrained multibody 

system: 

       
     36)  

( 36)  
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Expression ( 36) represents a second-order ordinary differential equation with (nc+nh) unknowns 

and nc equations. To enable solving the problem, it is necessary to add nh equations, which can be 

achieved by considering the kinematic equations. Despite being more adequate to apply equation ( 

15) to this problem, the achievement of a solution becomes difficult. Equation ( 23) can be applied 

instead, so as to provide the additional necessary equations. The system in matrix form becomes: 

 
 
   

 

   
  
  
 
   

 
   

37)  

( 37)  

To solve the system of equations of motion, several methods can be used, It was chosen to use 

the direct integration method (De Jalon and Bayo 1994). However, to guarantee its convergence, a 

stabilization method is required, such as the Baumgarte stabilization that allows converting differential 

algebraic equations in ordinary differential equations (De Jalon and Bayo 1994). Thus, the 

convergence and stability of the system is guaranteed. 

The right-hand-side of the acceleration equation results in an instable differential equation: 

              38)  
( 38)  

By means of the Baumgarte method, it is possible to obtain a more stable system recurring to the 

following equation: 

               39)  
( 39)  

As the first and second derivatives of the constraints equations are given by: 

 
 
         

         
  

40)  

( 40)  

Substituting ( 40) in ( 39): 

                     41)  
( 41)  

Replacing   by    in equation ( 37) results in a stabilized system: 

 
 
   

 

   
  
  
 
   

 

                
  

42)  

( 42)  

The constants   and   are parameters of the model and should be adjusted for each analysis. 

Their values must be included in the range from 0 to 20. 

5.4.3. Integration of the Motion Equations 

As referred, the method used to solve the motion equations is the direct integration algorithm. It 

allows studying the evolution of the system over time (    ,    ), knowing the initial position and 

velocity, and the external forces applied. This type of problem is designated as initial-value problem 

and the integrating processes are represented in Figure 30: 
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Figure 30 – Schematic representation of the initial-value problem (Silva 2003) 

  

5.4.4. Mass matrix for 3D rigid bodies 

The number of rigid bodies of a multibody mechanical system suggests that it is necessary to 

develop a mass matrix for each of them. Although, it is true that each rigid body has its own mass 

matrix, but its determination can be obtained from a basic mass matrix (constructed for a basic rigid 

body – see Figure 31) through a simple coordinate transformation. 

 

Figure 31 – Representation of the inertial and local system for a basic rigid body in 3D. It is made by two points (i 
and j) and two non-coplanar unit vectors (u and v). The reference frame (x,y,z) represents the inertial reference 

frame; the reference frame         represents the local reference attached to the rigid body that has is origin in 
the point O. The point P consists of a generic point of the element, and its localization is defined by the position 

vector r in the inertial reference and   in the local frame. 

 

Using the principle of virtual power of the inertial forces, it is possible to calculate the mass matrix 

for a rigid body. This expression can be described in the integral form as: 

 
            

 

    
43)  

( 43)  

where   is the density of the rigid body,   is the body’s volume,    and    are the virtual velocity and 

acceleration of  the generic point P, respectively. The latter can be calculated by means of a 

coordinate transformation, but before it is necessary to define the vector r. Since the element is rigid, 

the local relative position        remains constant. Considering the element defined by the Cartesian 

coordinates (points i and j and the unit vectors u and v), the position of point P relative to point i can 

be expressed as: 

                        44)  
( 44)  
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where   ,   and    represents the components of        in the 3D base formed by the vectors      , 

u and v. Through manipulation of ( 44) to the matrix form results: 

 

   
 
 
 
                              

  
  
 
 

      

45)  

( 45)  

where    is the identity matrix of order (3x3), and C represents the transformation matrix (independent 

of the system’s motion – constant in time).    is the vector of generalized coordinates of the rigid body. 

Deriving equation ( 45) twice with respect to time, one obtains: 

        46)  

        47)  
( 46)  
( 47)  

where     and     are respectively, the generalized velocity and acceleration of the basic rigid body. 

The coefficients   ,   and   can be obtained by rewriting equation ( 44) in the local reference frame of 

the rigid body: 

                        48)  
( 48)  

Expressing equation ( 48) in matricial form yields: 

 
           

  
  
  
     

49)  

( 49)  

where c is the vector that contains the coefficients   ,   and   and   represents the matrix containing 

the components of the vector       ,   and  . By definition these vectors are non-coplanar, so   can 

always be inverted; this fact allows solving equation ( 49) in order to c : 

    
  
       

50)  

( 50)  

Replacing the expressions ( 46) and ( 47) in the expression of the virtual power of the inertial forces 

( 43) results in: 

 
         

        
 

        
        

 

        
51)  

( 51)  

where   
 

  
 and   

 
are independent of  , and, consequently, can be moved outside the integral. 

Comparing ( 51) with ( 35) yields in the expression of mass matrix: 

 
        

 

    
52)  

( 52)  

Through integration (vide (De Jalon and Bayo 1994)), expression ( 52) results in the following matrix: 

 

 

53)  

( 53)  

where m is the total mass of the rigid body and ai is the first area moments of the rigid body. This 

moment can be calculated with respect to the reference frame with origin at i and the axes defined by 

the generalized coordinated of (     ) and unit vectors u and v. The matrix M is constant and 

symmetric in time, so during a dynamic analysis it is only necessary to compute it in the beginning. (It 
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depends of a set of ten values: total mass of the rigid body, the coordinates of center of gravity, and 

the six different elements of the inertial tensor). 

The presented mass matrix corresponds to an element with two basic points and two unit vectors. 

Generally, it is possible to identify these two conditions in an element; however, in case this is not 

possible, it is necessary to recur to another notations. These vary essentially in the number of basic 

points and unit vectors considered (e.g. element with three basic points and a unit vector, element with 

two basic points and a unit vector, etc.). The deductions are similar to the ones presented, but fall off 

the scope of the work and as such will not be presented. This deductions can be found in (De Jalon 

and Bayo 1994). 
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Chapter VI 

6. Protocol Definition 

 

 

In this chapter, the protocols established to analyze gait in a experimental environment are 

introduced and explained. These suggested protocols make use of the knowledge on anatomo-

physiology presented in chapter 2, the gait concepts of chapter 3 and the study of some gait 

pathologies presented in chapter 4 and are meant to be used in the LBL for the analysis of pathologic 

and non-pathologic gait. 

6.1. Marker Set Protocol 

The present work has been developed in LBL – Biomechatronic Research Group of Instituto 

Superior Técnico. The acquisition of kinematic data is made by means of four IR cameras – Qualisys 

ProReflex (QUALYSIS 2010) and two video cameras. The acquisition software is Qualisys Track 

Manager (QTM) (QUALYSIS 2010). 

The adopted protocol must be robust and fast setting, since one of this work’s objectives is the 

application of this study in a clinical context. At the same time, the number of markers and their body 

location setting must be compatible with the software used for data treatment - Visual3D
TM

 (c-motion 

2010) and Apollo (Silva 2003). 

The markers used in the trials are spherical passive markers with flat base and 19mm of diameter. 

They are made of polystyrene hemispheres covered in special retro-reflective tape, manufactured by 

Qualysis®. 

The Apollo software has been developed in IDMEC/IST – Institute of Mechanical Engineering of 

IST. It is a software for three-dimensional dynamic analysis of mechanical systems and permits an 

inverse dynamic multibody analysis. This software recurs to a biomechanical model of the human 

body, which considered 33 rigid bodies to model sixteen anatomical segments. A total of 25 anatomic 

points used to define the fifteen kinematic joints and the anatomical segments (23 measured and 2 

calculated). It is important refer that the notation used in developed routines follows the numeration 

presented in Figure 32 c) (Silva 2003). 

Visual3D
TM

 is biomechanical analysis software for performing kinematic and kinetic analysis as well 

as a three-dimensional observation of the movement. Visual3D’s modeling flexibility allows a variety of 

marker sets, requiring at least three markers to define a body segment. Visual3D
TM

 considers two 
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different types of markers: (1) Calibration markers – define the body segments and should be placed 

in anatomical references of interest. (2) Tracking markers – should be placed in strategic and 

geometrically relevant positions of the segments, used for computing the movements. Calibration 

markers can be used as tracking markers, although the markers placed in segment extremities can be 

easily affected by skin movement artifacts, which is a very important issue (Collins, Ghoussayni et al. 

2009; c-motion 2010). 

 

Figure 32 – Inverse biomechanical model used in Apollo Software. a) Representation of the 33 rigid bodies 
(numbers inside the circle) used to define the sixteen anatomical segments. b) Representation of the same model 

of a), but considering also the points (italic notation) and unit vectors used to define the model. c) Set of the 
anatomical points used to define the model presented in a) and b) (Silva 2003) 

 

According to Cappozzo et al., these artifacts are the most critical source of error in 

kinematic/kinetic studies. Since the frequency of skin movement artifacts and bone movements in 

locomotion is the same; there is no way of filtering such artifact from data of interest. To  mitigate this 

problem Cappozzo et al. suggest a careful marker placement in anatomical landmarks whose relative 

displacement is minimal, and an efficient algorithm to estimate the position and orientation of the 

desired segment from  the positions of the skin markers (Cappozzo, Catani et al. 1996). 

In order to be applied in academic and clinical studies, the developed model should consider 

several definitions proposed by (Cappozzo, Catani et al. 1995): 

Bone-embedded frames – the experimental data should be repeatable and applicable both for 

the same subject and for different subjects. The model should enable the determination of suitable 

axes with respect to all movements of each joint (rotations and translations). Moreover, it should also 

enable a practical implementation of techniques for the estimation of the center of mass and of the 

principal inertial axes of body segments. Finally, it should consider the muscle and ligament line of 

action, as well as its location and orientation. 

Marker points – the light emitted or reflected from markers should be oriented within a field of 

view of at least two cameras. The three markers defining a body segment should be sufficiently large 

so as to minimize the error propagation during reconstruction of marker coordinates. The markers 

should be easily implantable and applicable in anatomical objects (orthoses, prostheses, etc.) and 

their relative movement should be minimal.  
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Markers can be placed directly on the skin surface or assembled on components (plates and 

elastic bands) attached to the body. Cappozzo suggests preferentially the use of the latter, since their 

placement is easier and fast. Moreover, wide elastic bands help to reduce soft-tissue movement 

artifacts (Cappozzo, Catani et al. 1995). 

Hence, in this work a set of clothing accessories was conceived in order to be applicable in 

academic and clinical locomotion studies. This set consists of a pair of socks, lycra shorts, sleeveless 

sweater, a pair of cycling gloves and a lycra swim cap. To avoid clothes movement, it is important that 

each accessory tightly fits into the body and for that reason several clothes sizes were developed. 

It was pretended that the clothes accessories to be applicable for a large number of people, which 

demanded clothes to be washable. After some locomotion tests, the use of a sewed Velcro’s band 

proved to be the most effective mechanism for marker attachment, as it permits an easy and fast 

marker placement and it is washable and durable.  Furthermore, while it is in perfect conditions, it 

does not allow small displacements and vibrations of markers. In appendix C the photos and the 

projects of clothing developed accessories can be consulted. 

6.1.1. Extensive Marker set Protocol 

The first developed protocol, extensive marker set protocol (EMSP), takes into account all the 

aspects above. The EMSP consists of a model of 59 markers (22 tracking markers and 37 calibration 

markers) based on the model proposed by Visual3D (c-motion 2010). However, the obtained results 

are not good enough. Due to the low number of cameras (four), many marker trajectories were 

misinterpreted as the same one, and some markers were not visible by cameras. In order for QTM to 

consider a valid point; the corresponding marker has to be seen by at least 2 cameras at the same 

time (QUALYSIS 2010). 

The proposed model can be consulted in appendix B. Although EMSP will not be used in this 

thesis, it can be applicable in a biomechanics laboratory with more cameras, making this protocol 

preferable to the one presented in 6.1.2. 

6.1.2. Marker Set Protocol 

Due to the problem related to the insufficient number of cameras in the laboratory, it was necessary 

to develop a new protocol – Marker Set Protocol (MSP). MSP is based in Helen Hayes Marker Set 

(HH) developed by Kadaba at Helen Hayes Hospital (Kadaba, Ramakrishnan et al. 1991). Essentially, 

marker set protocols used in clinic represent variations of HH, as these are adapted for low resolution 

imaging systems, with as few markers as possible (Collins, Ghoussayni et al. 2009). 

The total number of markers in MSP is 33, distributed amongst the body. To standardize the data, 

the markers were placed in anatomical landmarks of each body segment. Several published works 

suggests different anatomical landmarks for each marker; the positions adopted for this thesis is 

based in the works of (Cappozzo, Catani et al. 1995; Collins, Ghoussayni et al. 2009) (vide Table 2). 

Unlike the previous protocol (EMSP), MSP considers all calibration markers as tracking markers, 

for the reasons explained in 6.1.3. The problem of skin movement artifact was attenuated, by using a 

set of tight clothes and carefully defining the placement of markers in locations of low skin 

displacement. The Apollo software, that will be the main tool of kinetic analysis, does not consider the 



78 
 

hypothesis of clusters of marker as tracking markers; the model input considered just 23 calibration 

markers that are at the same time tracking markers (vide Figure 32c)). 

 

Figure 33– marker set protocol (yellow – markers seen in the anterior view; red – markers seen in the posterior 
view) 

Table 2 – Location and Anatomical Landmark of markers in MSP 
Maker Nº Location Anatomic Landmark Maker Nº Location Anatomic Landmark 

0 Anterior left 

Skull 

Temporal line of frontal bone 17 Pelvis Left iliac crest (LIC) 

1 Anterior Right 

Skull 

Temporal line of frontal bone 18 Pelvis Right iliac crest (RIC) 

2 Posterior Left 

Skull 

Occipital protuberance (left) 19 Left Distal 

Knee 

Most prominent point of lateral 

femoral epicondyle 

3 Posterior Right 

Skull 

Occipital protuberance (Right) 20 Left Medial 

Knee 

Most prominent point of 

medial femoral epicondyle 

4 neck Spinous Process of C7 21 Left Distal 

Ankle 

Most prominent point of lateral 

malleolus 

5 Left Shoulder Clavicle – Acromion 22 Left Medial 

Ankle 

Most prominent point of 

medial malleolus 

6 Right Shoulder Clavicle – Acromion 23 Left Foot Upper ridge of the calcaneus 

posterior surface 

7 Left Distal 

Elbow 

Lateral epicondyle of humerus 24 Left Foot II metatarsal heads 

8 Left Medial 

Elbow 

Medial epicondyle of humerus 25 Right Distal 

Knee 

Most prominent point of lateral 

femoral epicondyle 

9 Left Wrist  Medial position between styloid 

process of radius and ulna 

26 Right Medial 

Knee 

Most prominent point of 

medial femoral epicondyle 

10 Left Hand Distal head of II Metacarpus 27 Right Distal 

Ankle 

Most prominent point of lateral 

malleolus 

11 Left Hand Distal head of V Metacarpus 28 Right Medial 

Ankle 

Most prominent point of 

medial malleolus 

12 Right Distal 

Elbow 

Most prominent point of  lateral 

epicondyle of humerus 

29 Right Foot Upper ridge of the calcaneus 

posterior surface 

13 Right Medial 

Elbow 

Most prominent point of  medial 

epicondyle of humerus 

30 Right Foot II metatarsal heads 

14 Right Wrist Medial position between styloid 

process of radius and ulna 

31 Left Hip Joint Center of acetabulum 

15 Right Hand Distal head of II Metacarpus 32 Right Hip 

Joint 

Center of acetabulum 

16 Right Hand Distal head of V Metacarpus    
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To define a pelvic coordinate system, several models have been developed. One of the most used 

is HH (Sacrum, Right ASIS and Left ASIS). However, these anatomical landmarks, especially the 

ASIS, are not easily palpable in some subjects (as in overweight subjects) and during locomotion 

these may be occluded several times due to arm movement and by skin tissue from the abdominal 

area. An alternative model is CODA (Right PSIS, Left PSIS, Right ASIS and Left ASIS), but has the 

same limitations as the HH model (placement in ASIS). (c-motion 2010; Fukuchi, Arakaki et al. 2010) 

Yet, an additional method uses 4 markers (RIC, LIC, Right Hip Joint Center and Left Hip Joint 

Center); and c-motion designates this method as Visual3D Pelvis. Some advantages can be pointed 

out: 1) easy identification of anatomic landmarks 2) these locations are not easily occluded by arm 

movement and skin tissue (c-motion 2010; Fukuchi, Arakaki et al. 2010). 

 Comparing the three presented methods, in this work, it was has chosen to adopt the last one 

because it requires fewer markers, it can be used in a wider range of subjects and can be applied both 

in Apollo software as in Visual3D
TM

.  

One last aspect to be considered was the use of two markers in some joints (ankle, knee and 

elbow). Although this method implies more markers, it enables an easy and more precise 

determination of articular center by computing the medial point of the two markers (Collins, 

Ghoussayni et al. 2009). The other joints are estimated by varying the distance of marker to respective 

joint center. The wrist joint is not calculated by the first method, due to the low number of cameras and 

the small distance between markers. The trajectories of hand-wrist are easily confused and the author 

preferred to consider only one marker in wrist to avoid blunders. 

6.2. Spatial Arrangement of Cameras and Force Plates 

As already referred, the LBL has presently four IR cameras (Qualisys ProReflex) and four video 

cameras. The present chosen configuration for the cameras had in consideration the several problems 

caused by the small number of cameras.  

In the first tested arrangement, the IR cameras were placed in the four corners of the laboratory. 

The results were not good enough, since the medial markers of the lower limbs, especially the knee 

markers, were in many instances occluded during the swing phase. As, the subject has only two 

cameras in front of him, the swing leg hides the stance leg during the mid swing and terminal swing 

from the camera disposed in the side of, which led to loss of information. 

The presence of markers in medial and lateral position in the lower limbs joints is essential to 

calculate of their articular center. The kinetic analysis of gait focuses on the study of the lower limbs, 

so it was preferred to modify the previous cameras arrangement to a different one which allowed the 

acquisition of medial markers with minimum occlusion. Hence, while the two cameras behind the 

subject and one of the cameras in front of him maintained their position, the other fourth camera was 

placed directly in front of subject, over the imaginary line of progression (vide Figure 34). Such 

arrangement solved the problem of occlusion of the medial markers of lower limbs. However, the 

maker trajectories of the hand and the elbow of the opposite side of the anterior corner camera lost 

some quality since the period of occlusion slightly increased; nonetheless, as these trajectories are 

relatively easy interpolated and not essential for kinetic analysis, this arrangement was considered as 

the most adequate for the present laboratory the conditions. 
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In what concerns the use of video cameras, these represent a qualitative method to visualize the 

trial and to take some notes. Hence, these were placed to record the sagittal and coronal view of the 

trial. 

To acquire de data from external forces, LBM is equipped with three AMTI-OR6-7 force platforms 

(508mm x 464mm). The software used to treat this data is essentially QTM. Since the data yielded by 

the force plates represents voltage, it was necessary to use an algorithm developed in MATLAB in 

order to obtain the corresponding forces and moments of force. The spatial arrangement of the force 

plates used is represented in Figure 34 and was the adopted by the LBL. The arrangement was fixed 

for all subjects and it is based in one of the configurations presented by (Richards 2008). 

 

Figure 34 - Representation of arrangement in space of the four IR cameras (red) and the two video cameras 
(white) used to acquire the motion and the three force plates used to acquire the GRF during the stride period 

(gray) 

6.3. Superficial Electromyography 

In order to perform a complete study of normal and pathologic gait, it is essential to understand the 

pattern of muscular activation. Monitoring sEMG can play an important role, especially during the 

study and detection of neurological injuries (Ricamato and Hidler 2004). 

Electromyography (EMG) is a technique that permits the study of muscles by recording and 

analyzing the myoelectric signals. These signals are generated by physiological variation in the state 

of membranes of the muscle fiber. It serves as an indicator for muscle activation (when muscular 

excitation begins and ends), enables the estimation of the force produced by the muscle and allows 

the study of the index of the rate at which a muscle fatigues (Perry and Bekey 1981 a); Cholewicki and 

McGill 1994; Delsys 2010)  

Typically, a detected and unprocessed signal is called a raw EMG Signal, as can be seen in the 

following figure: 

 

Figure 35 – The raw EMG recording for 3 contraction bursts of the M. Biceps (Konrad 2005) 
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The raw EMG baseline noise varies with several factors, as the quality of EMG amplifier, 

environmental noise and the quality of the conditions of detection. During contraction, spikes present a 

random shape, and thus cannot be precisely reproduced in exact shape. Usually this type of signal 

has a range of amplitudes between +/- 5000 μV and a range of frequency between 6 and 500 Hz 

(showing most of the frequency power between 20 and 150 Hz).(Konrad 2005) 

The EMG signal can be influenced by several factors as (Merletti 1999; Konrad 2005): 

Tissue characteristics – the electrical conductivity of the human body can vary with tissue type, 

thickness, physiological changes and temperature. For example, a subject with more fat tissue 

will have less EMG Magnitude due to the greater distance between the muscle and the 

electrodes. The number and size of muscle fibers also influence the amplitude of EMG signal.  

Cross Talk (physiological) – During a contraction of the muscle under study, its neighbors may 

also produce contraction, which can be detected at the site of local electrodes. The selection of 

the appropriate electrode size, inter-electrode distance and location should be carefully planned 

to avoid this phenomenon. In the study of some muscles (especially on the upper trunk and 

shoulder muscles) ECG spikes can also be observed. 

Geometry changes provoked by variations of the muscle belly – during contraction, some 

muscles change their geometry, altering the distance between signal source and detection site 

and thus causing variations in EMG reading. 

Electrode/Amplifiers – The selection and the quality of the EMG devices can also influence the 

quality of the recorded signal. 

The noise in EMG can be divided in 4 groups: 1) noise inherent to the electronic components of 

EMG device (0 Hz to several thousand Hz); 2) Ambient Noise – it is originated from sources of 

electromagnetic radiation (electric-power wires, light bulbs, etc.). The human skin is also a source of 

this type of noise; it is constantly embedded with electro-magnetic radiation from the surrounding 

space. (50/60 HZ) 3) Motion artifacts –comes from the displacement between the surface of the 

electrode and the skin, and also from the movement of the cable connecting the electrode to the 

amplifier. (0 to 20 Hz) 4) Inherent instability of signal – occurs essentially to frequency components 

between 0 and 20 Hz, due the quasi-random nature of the firing rate of motor units (De Luca 2002). 

A wide variety of electrodes can be found, with different shapes, sizes, materials and assemblies. 

The choice depends essentially on the objective of the study and on the muscle of interest (Soderberg 

1992). In electromyography studies two types of electrodes can be considered essentially (Winter 

1991): 

Indwelling electrodes (invasive) – mainly for the study of small and deeper muscles layers (but 

also superficial layers); 

Superficial electrodes (non invasive) – only for the study of superficial muscles, as these detect 

signals approximately 2cm below the skin tissue. 

Conflicting views emerge on which method is more susceptible to the cross-talking phenomenon. 

Winter considers that since an indwelling electrode acquires all the signals in a sphere of 2 cm radius, 

it is more susceptible to cross-talking phenomenon of deeper muscles (Winter 1991). Conversely, 

Perry, in a study where the differences between the surface and fine-wire electrodes in EMG were 
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compared, concluded that the results obtained by sEMG had tendency to present more cross-talking 

(Perry, Easterday et al. 1981 b)). 

 

Figure 36 - the amplitude and frequency spectrum of the EMG signal to different location in same muscle. (De 
Luca 1997) 

 

As can be seen in Figure 36, the location of the electrodes has significant influence on the resulting 

EMG signal. While in indwelling electrodes are placed directly in the muscle belly, in sEMG the right 

place for electrode is much less clearer (Soderberg 1992). Luca advocates that the electrode should 

be placed approximately in the middle line of the belly of the muscle between the nearest innervations 

zone and the myotendonous junction (De Luca 1997). The Orientation of electrodes is defined as the 

line between the 2 bipolar electrodes. Surface ElectroMyoGraphy for the Non-Invasive Assessment of 

Muscles (SENIAN), European recommendations for sensor placement procedures and signal 

processing for sEMG, recommends the placement of the electrodes with the orientation parallel to the 

muscle fibers. The placement of the reference changes according to the muscle  to study, always 

aiming at minimizing the common mode disturbance signal (bony prominence, larger size, good 

adhesive properties) (Merletti, Rau et al. 2010). Motion artifacts are avoided essentially with an 

appropriate electrode and cable fixation, although it is recommended not to directly tape over the 

electrodes, so as to keep a constant pressure of application (Konrad 2005). A correct placement of 

electrodes in sEMG requires a previous skin preparation. In order to improve the sEMG-recordings, 

reduce the number and intensity of artifacts, decrease the risk of electrodes imbalance and, lastly 

improve the S/N ratio. The skin preparation should consist in two procedures: 1) remove the hair (best 

electode adhesion) and 2) Clean the skin surface with alcoholic/abrasive pastes (Konrad 2005; 

Merletti, Rau et al. 2010). 

EMG signal processing can make use of several algorithms. To study the amplitude of EMG signal, 

the International Society of Electrophysiology and Kinesiology (ISEK) recommends (Merletti 1999): 

Smoothing – using low-pass filters, typically digital non causal FIR linear phase filters. 

Average Rectified Value (ARV) or Mean Amplitude Value (MAV) – represents the mean value of 

the rectified EMG over a time interval T; it is computed as the integral of the rectified EMG signal over 

the time interval T, divided by the value of T. 

Root Mean Square (RMS) –the square root of the mean square value.  
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Integrated EMG (IEMG) – the signal is integrated over a time interval, representing the area 

under a voltage curve measured in V.s
-1

. 

For studying gait, the analysis of amplitude provides information on the patterns of muscular 

activation. However, studies in the frequency and temporal domain can also provide important results. 

For instance, the frequency domain permits the study of fatigue, while the time domain allows the 

study of events such as foot-step pace and cadence. 

6.3.1. Superficial Electromyography Set Protocol (SESP) 

For the acquisition of sEMG signals, the LBL is equipped with Myomonitor
®
 III Wireless EMG 

System and Bagnoli
TM

 EMG System, both provided by DELSYS
®
. The acquisition and treatment of 

results, uses the EMGworks
®
 3.7 software, also provided by DELSYS

®
. 

This thesis has two main objectives – the study of non-pathologic and pathologic gait. Hence, the 

developed protocol should be both robust and quickly implemented so as to be used in the clinical 

context. Some works, as from Winter and Vaughan, present the muscular pattern activation for several 

muscles (Winter 1991; Vaughan, Davis et al. 1999). However the used protocol is very complex, 

making the assembly very slow. To circumvent this fact it was opted for the study of the principal 

muscular groups of the lower limbs with greater relevance in gait analysis (see chapter 3). 

Table 3 shows the muscles considered in the protocol and the correct placement of electrodes. The 

location is based on the SENIAN recommendations and should be done in both limbs (Merletti, Rau et 

al. 2010). 

Before the electrodes placement, a skin preparation procedure should be done as explained in 

section 6.3. 

If the results are inconclusive for SESP an exhaustive analysis can be done, studying the several 

muscles of each muscular group; the correct placement of electrodes can be consulted in Winter or 

SENIAN (Winter 1991; Merletti, Rau et al. 2010). 

Table 3 – Electrode placement of the SESP 

Muscular Group Muscle Electrode placement (see Figure 37) 

Triceps Surae Muscles Gastrocnemius Lateralis 1/3 of the line between the head of the fibula and the 

heel 

Gastrocnemius Medialis Most prominent bulge of the muscle 

Soleus 2/3 of the line between the medial condyles of the femur 

and the medial malleolus 

Anterior Leg Muscles Tibialis Anterior 1/3 on the line between the tip of fibula and the tip of the 

medial malleolus 

Posterior Thigh Muscles Biceps Femoris Middle of the line between anterior spina iliaca and 

superior part of patella 

Anterior Thigh Muscles Rectus Femoris Middle of the line between the ischial tuberosity and the 

lateral epicondyle of tibia 

Gluteus Gluteus Maximus Middle of line between the sacral vertebrae and the 

greater trochanter. The orientation should be the 

direction of the line from the PSIS to the middle of the 

posterior aspect of the thigh. 
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Figure 37 – Anatomical positions of the selected electrodes sites (Left – anterior view, Right – posterior view) 

6.4. Non-Pathological Acquisition Protocol 

6.4.1. Considerations 

Since the main objectives of this work is the study of the patterns of normal gait for 3 distinct 

groups, the selected subjects (children, men and women) were all healthy, presenting no gait 

abnormalities neither a family record of gait disorders. 

Each subject was asked to walk with his own natural cadence through a treadmill. One of the 

factors that may increase the number of rejected trials is the incorrect placement of feet in the force 

plate during the stance phase. As referred, each foot must be placed entirely on a force plate for a trial 

to be considered valid. Although most gait researchers do not inform subjects about the exact 

localization of the plates or ask them to not look to the ground, some studies were performed in order 

to understand if targeting the plates has significant influence on the results. Grabiner et al. performed 

several trials, asking the subjects to specifically target a force plate during the gait analysis or not 

informing their location. The authors concluded that targeting the force plates did not increase the 

variability of the GRF and as a consequence does not alter the variability of calculated joint kinetics 

(Grabiner, Feuerbach et al. 1995). Conversely, Paul considered this conclusion unjustified, since the 

study was focused solely on kinetic data, not considering the influence of targeting in the kinematic 

results; the author indicated that targeting the force platform results in lengthening or shortening of the 

stride length (Paul 1996). Wearing and al. reached the same conclusions. The researchers observed 

that subjects, when asked to not target the plate force, developed visual control strategies to correctly 

hit it. They also concluded that developing a specific protocol with an optimized start point for each 

subject, enabled his natural cadence, not affecting the GRF parameters (Wearing, Urry et al. 2000). 
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6.4.2. Acquisition Protocol 

Each subject was asked to perform a set of ten trials without knowing the localization of the force 

plates and when subjects identify their localization, it was asked not to look to the ground. After each 

trial, the kinematic results were analyzed and the start point was optimized, as suggested by 

(Wearing, Urry et al. 2000). The start point corresponded to the exact position located three steps 

behind the point of hitting the first force plate with the left foot. 

A test was considered valid when the subject walked along the entire treadmill with his natural 

cadence, hitting correctly the three platforms (left, right, left foot), performing three steps before the IC 

of the left foot with the first force plate and performing at least three steps after the TO of the third 

force plate. A minimum of 5-6 valid trials is suggested, since these allow a subsequent selection of the 

best data, excluding those that have seem valid but present failures at the time of analysis;  if 

necessary, other set with a variable number of trials should be performed. 

All the acquisition systems (IR cameras, video cameras, force plates and sEMG) should be 

triggered in synchrony, so as to avoid errors of data inconsistency caused by different start times. In 

the present work, the EMGWorks 3.7 software was responsible for triggering these systems. 

6.5. Data Treatment Protocol 

6.5.1. Data treatment using QTM 

In order to perform a kinematic and kinetic analysis, it is necessary to previously process the 

acquired data. The treatment of kinematic data is performed primarily with QTM. Although this 

software can be used to perform kinematic analysis, in this work it is used only to acquire the markers 

and treat the trajectories. An AIM model of 33 markers was defined for a rapid assignment of the 

trajectories; the order of the markers is the same as in Table 2. These assignments require attention, 

especially when many markers are used or the distance between them is relatively small (EMSP 

case); some markers can be considered as the same or can be confused (if the software considers 

marker x as marker y and vice-versa, which can happen when two markers pass simultaneously in the 

same area) leading to an incorrect definition of trajectories (examples of usual trajectory errors – occur 

with the hip markers when the hand passes close to the hip, medial knee markers during middle swing 

and the three markers defining the hand, during all the trial) (QUALYSIS 2010). 

Depending on the stride to be analyzed (right or left), one should consider at least 10 frames before 

the IC of the foot in analysis and at least 10 frames after the second IC of the same foot. This measure 

is essential to a correct data filtering in the Apollo software. The first event must be equal to all 

subjects in order to enable the posterior analyses with Apollo software and to be subsequently used in 

the database. The IC was chosen as the first event, in agreement with most of gait researchers.  

The interpolation of gaps in trajectories is also performed by QTM; this software makes use of the 

NURBS interpolation (Non-Uniform Rational B-Splines), an algorithm used to define free-form curves 

and surfaces through more simplistic geometry (Terzopoulos and Qin 1994). 

In case the analysis uses Visual3D software, data must be exported to a *.C3D file (a binary file 

format used in some biomechanics software). If the objective is a kinematic and kinetic analysis using 
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Apollo or the inclusion of a trial in the developed database, both kinematic and force data should be 

exported to a *.tsv file (tab-separated values) (Motion Lab Systems 2010; QUALYSIS 2010). 

6.5.2. Preparing data to be used in Apollo 

The Apollo software requires four input files: *.kin (file with kinematic information), *.frc (file with the 

GRFs and their applications points), *.sml and *.mdl (input files with information about the 

biomechanical model, acquisition frequencies, number of frames, filter design and file inputs). Apollo 

was developed to receive kinematic and force inputs from other motion acquisition software (Ariel 

Dynamics), which differs significantly from the outputs of QTM. 

To prepare these four file inputs, a series of routines were developed in MATLAB. The file 

GaitAnalysis.fig allows the user to convert the *.tsv files from the QTM software to the required *.kin 

and *.frc formats. This file also permits the creation of simulation files (*.sml and *.mdl). (vide Appendix 

D - Figure 70 a)). 

6.5.3. Read the kinematic, kinetic and electromyographic results 

The interface GaitAnalysis.fig serves as a main menu where other routines can be called, such as 

ApolloAnalysis.fig, semgdatabase.fig and Analisedatabase.fig. 

ApolloAnalysis.fig is a tool to analyze the kinematic and kinetic results provided by Apollo for each 

subject. It permits the visualization of kinematic plots and kinematic data of interest, as the position, 

consistent position, velocity, acceleration of each marker and the angular variations in joints of 

interest. It also displays the anthropometric data and the three components of GRFs, as well as their 

application points. Additionally, the kinetic results, as the moments of forces and their application 

points, the mechanical power and the positive/negative work can also be plotted and consulted in this 

routine. 

As for the Analisedatabase.fig routine, it consists of a menu of the developed database, providing 

the same results as ApolloAnalyis.fig, although considering the results for a group of analysis 

(children, men, women and elderly). This routine also permits comparing the data of a particular 

subject with the data of his respective group. The plots and matrices presented are the mean values 

and standard deviation for all the Apollo outputs (*.BMI) contained in the folder of analysis. To 

correctly compare the results, the data of each subject is interpolated (with a cubic splines algorithm – 

MATLAB function) to a number of frames adopted for the entire group (the thesis used 200 frames). 

The mean value is calculated to all frames using the “mean” function and the standard deviation using 

the “std” function of MATLAB. To perform this statistic treatment MATLAB considers  equations ( 54) 

and ( 55) (MathWorks 2010): 
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55)  

( 54)  

( 55)  

where xi is the value of the of the frame of interest of subject i (position, velocity, etc…), n is the 

number of elements in the sample (number of subjects),   is the arithmetic mean for the frame of 
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interest to all subjects in analysis and s is the sample standard deviation for the frame of interest to all 

subjects in analysis. 

 

Figure 38 – Developed database for the analysis of the time-distance, kinematic and kinetic parameters 

 

The semgdatabase.fig routine consists in a interface which allows the study of the sEMG patterns 

for each group considered in this thesis, as well as it allows to comparison of the obtained results for a 

given subject with his respective group of analysis. The underlying ideas to its development are the 

same as those presented for the Analisedatabase.fig routine, i.e. the mean and standard deviation 

values are calculated after the data being interpolated to a fixed number of samples. 

 

Figure 39 - Developed database for the analysis of sEMG patterns 
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Chapter VII 

 

7. Results for non-pathological gait 

 

 

7.1.  Method 

In the present study, ten men (  =23.8±1.75 years old), nine women (  =23.40±0.52 years old) and 

two children (  =9.5±2.12 years old), with no history of gait disorders were selected. People were 

asked to walk across a treadmill without knowing the presence of the plate forces. The used marker 

set, sEMG and acquisition protocol are the MSP, SESP and NPAP respectively, presented in chapter 

VI. Concerning the spatial distribution of the cameras and forces plates, these parameters followed the 

configuration presented in previous chapter. It was used a sampling frequency of 100 Hz to the IR 

cameras and force plates. To the acquisition of sEMG was used the Myomonitor
®
 III Wireless EMG 

System, with a sampling frequency of 1000 Hz and a gain of 4000. This system was placed inside of a 

belt pack in the abdomen anterior position. 

The kinematic, kinetic and electromyographic results presented in this section were treated with the 

routines explained in 6.5. 

In the next sections the obtained results for the three groups considered will be presented. In this 

thesis it was opted for presenting in each section the results for only one of the group, though the 

graphical representation for the remaining can be consulted in Appendix E. Since one of the main 

goals of this thesis is to develop a database with kinematic, kinetic and electromyographic data for 

normal Portuguese subjects, the obtained results will be compared with other studies to validate the 

protocol’s applicability and the routines developed. The results of this study are also presented in 

Appendix E. The graphical representation of results is presented in function of % of GC (stride period). 

Zero percent corresponds to the heel strike (IC) of right foot and the 100% corresponds to the next 

heel strike of the same limb. 

Another goal in this work is the applicability of these protocols and routines to clinical practice, in 

next sections it will be only discussed the results that can provide useful information, i.e. the 

parameters that allow to understand the principal deviations of normal pattern. 
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7.2. Kinematic Results 

7.2.1. Time distance Parameters 

In Table 4 the results obtained for the principal time parameters presented in section 3.5 are 

presented. Comparing the cadence results, children present the highest value, followed by women; 

whereas, men group presents the lowest value. These variations between groups are consistent with 

the values expected, i.e. the literature show that men tend to present slower cadences while children 

present higher cadences. However, these values are relatively smaller than those presented in section 

3.5. These results are consistent with the idea presented by Öberg et al., that exists variations 

between trials performed in short and long treadmills (Öberg, Karsznia et al. 1993). 

Another fact that may influence the time-distance parameters is the fixed spatial distribution of the 

force plates and the necessity of hitting it. The assembly used is designed to try covering all the three 

groups considered, as well as to enable its utilization with subjects with different gait disorders. During 

the analysis, it was observed that the necessity of hitting the force plates may have distorted these 

parameters; e.g. in first trials, men presented a stride length and velocity that did not allow hitting 

correctly the plates, because of that, it was asked to reduce their velocity slightly. This effect can be 

observed in the small difference between men’s stride length and women’s stride length, as well as in 

the difference between their cadences. Winter stated that in general, this difference varies between 6 

and 11 steps/min (a difference of 18 steps/min was obtained) and Murray concluded that the 

difference between stride lengths for the two groups is approximately 0.26m (the stride length 

obtained for the two groups is practically equal) (Murray, Drought et al. 1964; Murray, Kory et al. 1970; 

Winter 1991). 

During children analysis, it had to be asked to increase slightly their stride length to allow hitting 

correctly the force plates and as a result, this parameter presents higher values than those observed 

in literature (approximately 1m) (Sutherland 1997). 

Despite being an important tool to analyze the human walking, the measurement of time-distance 

parameters should be performed without considering the necessity of hitting the force plates as those 

indicators have a purely kinematic nature 

. 

Table 4 – Time-distance parameters. Stride time, stride length, cadence and velocity were calculated taking the 
right IC as the reference point. The remaining parameters were calculated between the right IC and left IC 

 Men Women Children 

             

Stride Time [s] 1.2850 0.1227 1.0829 0.1104 1.0500 0.0990 

Stride Length [m] 1.2512 0.0614 1.2533 0.0589 1.1114 0.0140 

Step Time [s] 0.7190 0.0799 0.6286 0.0398 0.6300 0.0566 

Step Length [m] 0.6133 0.0222 0.6171 0.0372 0.5496 0.0140 

Cadence [steps/min] 94.1882 9.4190 111.7962 11.2526 114.7959 10.8231 

Velocity [m.s
-1

] 0.9832 0.1202 1.1675 0.1278 1.0626 0.0868 

Width [m] 0.0580 0.0400 0.0760 0.0202 0.0219 0.0509 

Right Foot Angle [º]  9.4155 5.6260 -1.1048 0.0202 6.0226 1.4502 

Left Foot Angle [º] 5.5130 5.2233 -3.5493 3.2047 3.3794 7.0867 
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7.2.2. Foot displacement and velocity 

The developed routines allow analyzing the displacement, the velocity and the acceleration of each 

marker of the model presented in Figure 32. However, in this section, it will only be presented the 

results for the right foot markers (toe and heel). The study of these two markers is important to 

understand the mechanisms of foot, enabling the detection of several gait disorders. The graphical 

representation of these results can be consulted in Appendix E - Figure 71. 

For these three parameters, both groups present a graphical pattern that is very similar with the 

ones found in literature (Winter 1991). However, especially in men, the magnitude of these values 

(graphical peaks) is more consistent with those obtained by Winter for slow cadence. In Table 5 the 

obtained results for men are presented and, as it can be seen, the values are inclusive smaller than 

those obtained for slow cadence. It is a fact that both time-distance parameters and these results are 

in concordance with the theory presented by Öberg et al. (vide 3.5), which states that the environment 

of study influences the normal cadence of a subject.  

The vertical displacement of heel starts with HO. The maximum value is achieved during middle 

swing, when the knee is at its maximum extension. Both vertical and antero-posterior velocity may 

present a non-zero value during IC events (HC by assumption), which results from the position of the 

marker, placed few centimeters over the heel. During WA, while the foot is spinning over the 

calcaneus, the precise location of the marker has a slight movement that causes this apparent non-

zero velocity (Winter 1991). 

The pattern of vertical displacement of toe is characterized by a small peak (approximately 2cm) 

after the TO, which results from the angular configuration of leg and foot. The critical phase of toe 

clearance happens after the first peak, when the toe passes few centimeters over the ground with an 

antero-posterior velocity of approximately 3.278 m/s. The second peak (approximately 14 cm) occurs 

instants before new IC, when the knee extends and the foot dorsiflexes. 

 

Table 5 – Results obtained for vertical displacement and antero-posterior and vertical velocity of foot markers 
(men) 

 Vertical displacement (m) Vertical Velocity (m/s) Sagittal Velocity (m/s) 

 % GC Maximum % GC Maximum % GC Minimum % GC Maximum 

Heel 66.3% 0.2046 57.79 0.9567 77.39 -1.053 81.91 2.881 

Toe 95.98% 0.1427 88.94 0.5577 2.513 -0.6069 76.88 3.278 

7.2.3. Joint Angles 

The analysis of joint angular displacement is probably one of the most used methods to detect and 

correct gait disorders. This study is essential to design personalized devices that compensate 

deviations from typical patterns. Thus, in this section the normal patterns of the joint angular 

displacements will be addressed and compared with the gait description performed in section 3.4. The 

obtained results were calculated using the formulation presented in 3.1.6. In order to calculate the 

body segment angles (thigh, leg, trunk, foot), the inner product approach was used. Considering θi the 

angle of the i
th
 body segment, o a unit vector with relevance in the analysis and pi the vector which 

defines the orientation of the body segment i, the segment angle can be calculated as (Hefferon 

2006):  
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56)  

( 56)  

where     is the dot product of vectors [ ,   ], and            are respectively the norm of the vector   

and   . Since the codomain of the function arcos is [0-π], the direction of the vector o is chosen to 

enable obtain values in this range, e.g. the thigh rotates approximately between 75º-120º, so the 

chosen vector was the (1,0,0). 

Although most joints have some importance in the mechanisms of progression and balance, (e.g. 

the shoulder/elbow mechanisms have an important role in maintaining the body balance and 

minimizing the torque in joints – vide 3.4) it was opted for presenting only the obtained results that are 

the most relevant and the most discussed in literature – hip flexion/extension, knee flexion/extension 

and ankle dorsi-plantar flexion. However, the developed routines allow the calculation of many other 

joint angular displacements: a) sagittal plane – foot, leg, thigh, trunk, shoulder, elbow and neck b) 

horizontal plane – foot rotation and pelvic rotation c) coronal plane – hip abduction/adduction and 

pelvic tilt. 

It is important to mention that several studies present results for these three parameters, obtaining 

for ankle and knee angle similar results. Whereas, the hip joint angle varies depending on the author, 

i.e. the curve patterns are similar but the values of maximum extension and flexion are relatively 

different. This fact is caused by the different definitions of the hip angle, e.g. some authors consider 

the maximum extension as 0º and therefore the maximum flexion is approximately 40º, while other 

authors consider the vertical thigh in quiet standing to be zero position. The present study used this 

last definition – (θh=θth-θtr). In the Table 6 is compared the results obtained in present study with 

previous works. Figure 40 shows the graphical representation obtained for men groups.  

 
Table 6 – Comparison of joint angle (º) with previous works [(Sutherland, Olshen et al. 1980; Kadaba, 

Ramakrishnan et al. 1991; Winter 1991; Perry 1992)] 

 Maximum Present study (men) Winter Perry Kadaba et al. Sutherland et al 

Ankle Plantar flexion -2.157 -19.77 ~-20 ~-13 ~-20 

Knee Flexion – stance phase 13.21 21.67 ~18 ~17.5 ~18 

Flexion – swing phase 59.44 64.86 ~58 ~60 ~62 

Hip Extension -9.83 -10.95 ~-10 ~-3 ~-2 

Flexion 24.59 21.87 ~32 ~37.5 42 

  

Analyzing the results, it is observed that Men, women and children groups showed similar results 

among them. Both hip and knee joints present an angular displacement similar with the values found 

in literature. The only exception is the hip angle for children; contrarily to the expected, this parameter 

presented no hip extension, since the joint angle varies between 3º and 35º. Comparing the children 

thigh and trunk angle with other groups, a significant difference is observed in the second parameter. 

Both men and women presented small oscillations around 90º (erect posture), while the children 

presented the same pattern of oscillations, but around 84ª-85º (forward flexion of trunk) (vide Figure 

72 – Appendix E). This difference may be related with the use of the wireless EMG system in an 

abdomen anterior position. This system has a considerable weight, which, especially in children, may 

affect the posture, causing a slightly anterior flexion of the trunk. Since, it is used the trunk angle in the 
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calculation of the hip angle, an error is introduced by this abnormal flexion causing the differences 

observed. 

Also, the results obtained for ankle joint present a pattern slightly different in comparison with 

expected values. Particularly, during TO event, an angular magnitude of approximately -20º (vide 

3.4.5) was expected, which is considerably different from the value obtained (-3º). A possible 

explanation for this is the incorrect development of the marker set protocol. The EMSP considered two 

markers in an anterior position of the foot – II metatarsal heal and V metatarsal head. The first enables 

the study of foot angle (horizontal plane) and toes displacement, while the second is used to calculate 

the foot angle (sagittal plane). As referred in section 6.1, the EMSP presented several problems in 

data treatment caused by the few number of IR cameras used, and as result the protocol had to be 

adapted. It was chosen only the first marker for the calculation of the foot angle in sagittal and 

horizontal plan. In order to avoid this error in the future it is advisable to use an additional marker in 

the V metatarsal, and make use of this data to calculate the ankle joint angle. 

 

Figure 40 – Joint angles obtained for men group: a) ankle (on the top) b) knee (left) c) hip (right) 

 

In the scope of the study of joint angles, it is also necessary to address the parameters related with 

angular velocities. This study is necessary to the calculation of the mechanical power (vide 7.3.3). This 

parameter is obtained as the derivative of angle with respect to time: 

 
  

  

  
 

57)  

( 57)  

where   is the angular velocity and   the joint angle. In appendix E, the hip, knee and ankle angular 

velocities (sagittal plane) are showed for the three analyzed groups. The obtained results presented 

the expected behavior; the only exception is the lower value of the ankle angular velocity during the 

PO. However, these results were expected, since their calculation was based on the derivative of a 

parameter with a systematic error (ankle angle). 
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7.3. Kinetic Results 

7.3.1. Ground Reaction Forces and Center of Pressure 

As mentioned in the section 3.6.2, for subjects with no pathologies the measurement of GRF and 

COP usually present a characteristic graphical representation. For each group the obtained standard 

deviations are relatively small, attesting the idea that the three components of the GRF present a well-

defined curve in these cases. In both cases a stride period of approximately 63% of GC (37% swing 

period) was observed, which is in concordance with the results from literature. Once more, the men 

group presented a pattern of values more consistent with slow cadence results. As can be seen in 

Figure 41; the first peak of Fz has a value almost equal to the BW (approximately 1). Generally, this 

behaviour is observed in slow cadence studies. On the other hand, the children group presented 

values more consistent with the observed in fast cadence, the first peak of Fz present a normalized 

value of 1.305 (Winter 1991). 

Recurring to equation ( 11), it is possible to study the evolution of COP during the stance phase. 

Significant differences were not observed between the three groups, presenting a pattern in 

concordance with literature (vide 3.6.2.1).  

As mentioned, the study of these two parameters is extremely important, since most of gait 

disorders produce considerable deviations in these patterns, and understanding these variations is 

essential to develop prostheses/orthoses adaptable to each patient. The analysis of two subjects 

suffering from neuromuscular pathologies allowed the observation that sometimes their 

prostheses/orthoses originate foot sores, often caused by the poor design of the insoles used. 

 

Figure 41 – GRF components and COP obtained for men group 

7.3.2. Joint Moments of Forces 

Moment of force, also denominated as torque, is an external solicitation that causes a body rotation 

about a specific point or axis. It is defined as the product of a force acting at a given distance and, as a 

result an angular acceleration over the point or axis of rotation is generated. It is possible to apply this 

concept to joints, where the applied force is the set of the internal forces that act in that joint. Thus, 

this parameter includes the moments caused by muscles and ligaments, joint friction and other 

structural constraints. The value of this parameter varies substantially with the joint angle and angular 
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velocity, caused by the subject intrinsic muscle characteristics – force-length and force-velocity 

(Winter 1991; Anderson, Madigan et al. 2007). 

The formulation of inverse dynamic analysis, presented in chapter V, allows the calculation of the 

internal forces in kinematic pairs (Lagrange multipliers methods). Adding a driving actuator (constraint 

equation) for each DOF of the model, the simulation enables the calculation of the Lagrange 

multipliers associated to each joint torque (Silva 2003). 

In Figure 74, the model used in Apollo software is represented. Although the routines presented in 

chapter VI allow the analysis of the torques for all forty four DOFs of the model, in this section only the 

torques with relevance in the human walking will be presented: the ankle, knee and hip, respectively 

M1, M4 and M7. 

The data presented in this section are normalized by bodymass. The signs convention follows the 

Winter notation. Commonly, two different conventions are considered, the one used in this thesis 

considers as positive the extensor torques, due to the fact that they push away the members of the 

ground. Other usual notation, such as Perry’s notation, considers the moment caused by the action of 

the GRF – physiological torque. Essentially, these two conventions vary in the signal values, 

presenting symmetrical graphics. Thus, in this thesis a hip extension and an ankle plantar flexion 

moment are represented as negative, while a knee extension moment is represented as positive 

(Winter 1991). 

The ankle torque presents a characteristic graphical representation. At IC the GRF vector is 

located behind the ankle causing a physiologic plantar flexion torque, therefore the body counteracts 

generating a dorsiflexor torque to control this. Due to the rapid advancement of COP, and the 

localization of this vector on an ankle anterior position, a physiological dorsiflexion torque is generated 

(5% of GC), hence, the body responds producing a plantar flexion torque. With the continuous 

advancement of COP, the value of ankle torque magnitude decreases (more negative), having a 

maximum value in late terminal stance. Until TO, the ankle torque magnitude increases (less 

negative), being null in swing phase (Perry 1992). 

Both knee and hip moments also present a characteristic pattern, although the variability is 

considerable higher comparing with the ankle torque. The knee torque pattern is characterized by 5 

peaks (2 extension peaks and 3 flexion peaks). The two extensor torques are caused by the knee 

anterior location of the GRF vector – instants after IC (0-3% GC) and between MS and middle of TS 

(20-42% GC) (vide - Figure 6). On the other hand, the first two flexion peaks are a result of the knee 

posterior location of the GRF vector. – WA-MS (3-20% GC) and middle of TS till PO (42-60%). The 

third flexion peak occurs in the terminal swing (Winter 1991; Perry 1992). 

The hip torque graphic is characterized by a first extension peak in the first instants of the GC. After 

this phase, the torque magnitude decreases and approximately at 30% of GC the hip torque reverses 

from extension to flexion. The hip torque magnitude continues to increase having a maximum torque 

value at the beginning of pre-swing phase. The torque magnitude decreases again, having a minimum 

torque (extension peak) in terminal swing (Winter 1991). 

In Figure 42 the obtained results for the women group are presented. The graphic patterns for the 

three groups are in accordance with literature (Appendix E). The small differences in magnitude of 
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graphic peaks between groups (children – higher values, men – lower values) are consistent with the 

bibliographic results for different cadences. As expected, the hip and knee torques presented higher 

standard deviation values than those obtained for the ankle torque. However, these values are still 

relatively small and thus, indicate the proper application of the protocol. 

Analyzing the men hip plot, some noise can be observed during late swing phase. This may have 

been originated by instabilities in the calculation of Jacobian matrix, caused by total extension of knee. 

 

Figure 42- Moment of force obtained for women group a) right ankle moment (left) b) right knee ankle (right) c) 
right hip angle (down) 

7.3.3. Mechanical Power and Work 

The dynamic analysis is not complete without the study of the mechanical power. This 

measurement is sometimes used for the detection of gait disorders, such as cerebral palsy. 

Mechanical power is defined as the work performed per unit time and it is calculated as:  

          58)  
( 58)  

where    is the flexion-extension moment and    the joint angular velocity of joint j.    is the 

mechanical power, it is defined as positive when a concentric contraction is performed and as 

negative for eccentric contractions. Equation ( 58) is applicable assuming that the torque generator in 

joint j is independent of the events in other joints. This assumption is not always valid, like in the case 

of biarticulated muscles that can perform isometric contractions, transferring energy between 

segments  (Winter 1991; Chen, Kuo et al. 1997). 

From the calculation of the mechanical power is possible to estimate the positive and negative 

work done in a given joint.  Considering a gait cycle, the positive (  ) and negative work (  ) is 

calculated as (Gutierrez, Bartonek et al. 2005): 

 
         

  

  

         
59)  
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( 60)  
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where the    and    are respectively the initial and final gait cycle times. 

The graphical pattern of mechanical power presents several characteristics that are common to all 

groups. Figure 43 shows the obtained normalized results for the women group (the magnitude of the 

mechanical power are divided by subjects’ body mass). The small differences of power magnitude 

between men, women and children are related with the different cadences observed in these groups. 

Once more, the pattern of ankle power presented significant differences in the magnitude of values 

during the PO. This is expected since the angular velocity, for this period, showed a lower value than 

the ones of literature. (vide - 7.2.3). 

 

Figure 43 – Mechanical power obtained for women group a) right ankle (left) b) right knee (right) c) right hip 
(down) 

 

The analysis of the mechanical power provides an idea of the energy expenditure during the gait 

cycle. The ankle graphic presents two important phases. The first (A1) occurs between 5-40% of GC 

and corresponds to a phase of power absorption (negative work), when the ankle dorsiflexes under 

control of an increasing plantar flexion torque. The second phase (A2) is characterized by an abrupt 

power generation (positive work) during PO. Almost 80-85% of the generated energy in a GC is 

expended in this action. A third phase can also be considered that corresponds to the dorsiflexion of 

the foot after PO (until MSw), though the magnitude of this values is extremely small (low mass 

ballistic movement) (Winter 1983; Winter 1991). 

The knee power plot presents four relevant phases: 1) Negative work (K1) – K1 occurs during WA 

phase while the knee flexes controlled by the action of quadriceps. 2) Positive work (K2) – K2 occurs 

between 15-40% of GC, while the knee extends by the action of quadriceps. Almost 10-15% of the 

generated energy in a GC is expended to perform this action. 3) Negative work (K3) – K3 begins with 

PO and continues until 70% of GC. it is characterized by the flexion of the knee controlled by the 

action of quadriceps. During this phase, there is no positive work, since the energy used for swing the 

leg comes from the pendulum action. 4) Negative work (K4) – K4 begins approximately in the MSw 

A1 

A2 

K1 

K2 

K3 

K4 

H1 

H2 

H3 
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phase, when the knee begins to extend controlled by the action of the hamstrings (for leg control and 

deceleration) (Winter 1983; Winter 1991). 

In general terms, the hip power graph present higher variability than those of the knee and ankle. 

However, three power phases can be distinguished: 1) Positive work (H1) – H1 begins with the IC of 

ipsilateral foot and continues approximately till 20% of GC, when the hip starts extending controlled by 

the action of the hip extensors. 2) Negative work (H2) – begins after H1, when the hip continues 

extending (backward rotation of the thigh) controlled by the action of the hip flexors. This muscular 

action helps to control and decelerate this rotation. 3) Positive work (H3) – H3 begins few instants 

before the TO, the action of hip flexors helps to accelerate the leg to perform the swing phase (Winter 

1983; Winter 1991). 

In order to solve the equations ( 59) and ( 60), a routine was developed which calculate 

automatically this value. The integral was computed using the trapezoidal method defined in MATLAB 

(MathWorks 2010). Table 7 shows the positive and negative work for all groups. The adult male group 

presented the lowest value, which are in concordance with the fact that these tended to present a slow 

cadence. In the same way, the children group presented the highest value. However, the obtained 

results for the ankle work are affected by the reported differences in the calculation of the mechanical 

power for this joint. 

Table 7 – Positive and negative work for men, women and children groups 
 Men Women Children 

 W
+
 [J/kg] W

-
 [J/kg] W

+
-W

-
 [J/kg] W

+
 [J/kg] W

-
 [J/kg] W

+
-W

-
 [J/kg] W

+
 [J/kg] W

-
 [J/kg] W

+
-W

-
 [J/kg] 

Ankle 0.0980 -0.1934 -0.0954 0.1282 -0.1983 -0.0701 0.1019 -0.1898 -0.0879 

Knee 0.0173 -0.1776 -0.1777 0.0258 -0.2684 -0.2426 0.0585 -0.2794 -0.2209 

Hip 0.1872 -0.0174 0.1692 0.2813 -0.0252 0.2561 0.3461 -0.0021 0.3461 

Total 0.3025 -0.3884  0.4353 -0.4919  0.5065 -0.4716  

 

7.4. Gait Determinants 

In section 3.8 three theories were presented to explain the mechanisms of human walking – 

inverted pendulum, gait determinants and dynamic walking. In this section the results obtained for the 

three groups of analysis will be compared with the six ideas proposed by (Saunders, Inman et al. 

1953). 

7.4.1. COM 

Figure 44 represents the horizontal and vertical displacement of COM for the men group, assuming 

that it is located in the middle position of the two hip markers. The graphical representation is 

consistent with the pattern presented by Saunders et al. The total amount of vertical and horizontal 

displacements (Table 8) is also in concordance with the values presented by the same author. It is 

important to mention that the graphical representation of the COM horizontal displacement can be 

subject to a small error, like verified in children, caused by the fact that sometimes subjects do not 

walk parallel to the direction of progression axis and, hence, the horizontal position of COM is not 

equal in the first and last instant of analysis. 
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Figure 44- horizontal and vertical displacements of the COM during a GC.  
 

Table 8 – Total amount of vertical and horizontal displacements of the COM, assuming that the COM located in 
the middle position of the two hip markers 

 Vertical displacement [cm] Horizontal displacement [cm] 

Men 2.13 3.2 

Women 1.76 3.22 

Children 2.55 1.81 

7.4.2. Six gait determinants 

The 1
st
 and 2

nd
 determinant cannot be computed using the outputs files of the Apollo software, 

since its biomechanical model does not consider markers in the anatomical positions that are used in 

the calculation of these parameters (RIC and LIC). For simplicity of the data treatment, it would be 

important to consider a new model in Apollo, which receives these markers in its input files, and yields 

in their output files. 

However, an approximation was performed and using the hip markers to calculate the lateral pelvic 

tilt (2
nd

 determinant) is possible observe the expected pattern (Figure 45 a)), i.e. a positive 

tredelenburg during the first 50% of the GC, and a negative tredelenburg during the last 50% of the 

GC. 

  

Figure 45 – a) Lateral pelvic tilt for men group. b) Foot angle for men group. 

 

Using the RIC and LIC markers to calculate the lateral rotation (1
st
 determinant), the pelvic rotation 

presented the expected pattern (Figure 17). 

The 3
rd

 determinant considers the existence of a knee flexion of approximately 20º, during early 

support phase. Such fact allows both the absorption of impact energy and reducing the reduction of 

COM’s vertical displacement. Analyzing the knee angle graphics (Figure 40) and data presented in 

Table 9, the pattern presented by Saunders et al. is observed. The highest value observed in the 
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children group is consistent with the faster cadence observed in this group, as well as the lowest value 

in men group. 

Table 9 – maximum knee flexion during early stance phase. 

 Knee Flexion [º] stride period [%] 

Men 13.21º 14.07 

Women 16.21 12.06 

Children 26.86 14.02 

 

Considering the graphical representation of the foot angle (sagittal) (vide Figure 45 b)), the two 

arcs that define the 4
th
 and 5

th
 determinants identify can be identified. The first arc begins with IC 

event and continues until the foot is flatted (~10% GC). A decrease in the foot angle from 195º to 180º 

can be observed, resulting from the foot rotation over the heel. During this phase, the idea of a 

restrained plantar flexion is also observed through the analysis of the ankle torque graphic (Figure 42) 

and sEMG pattern of the tibialis anterior (Figure 79). A dorsiflexor torque is generated to control the 

plantar flexion caused by the location of the GRF vector in an ankle posterior position (vide 7.3.2). 

The second arc begins with the HO event, when a decrease in the foot angle from 180º to 128º is 

clearly observed, corresponding to the rising of the heel. The idea of a powered plantar flexion can 

also be visualized in the ankle torque graphic and in the sEMG pattern of the triceps surae muscles. 

Both graphs present a distinct peak in this phase (vide Figure 43a) and Figure 76-78). 

In order to minimize the horizontal displacement of COM, Saunders considers the existence of a 

hip adduction angle during the stance phase (the knees are medial to the hips) – the 6
th
 determinant.  

Analyzing the results obtained for all groups (Table 10), this behavior is observed. The highest value 

of hip adduction angle observed in women is natural, anatomically, the female pelvis is wider (vide 

2.1.3). 

Table 10 – Maximum hip adduction angle during stance phase (right limb) 

 Hip adduction angle [º] stride period [%] 

Men 3.88 33.17 

Women 7.627 15.58 

Children 6.098 20.1 

7.5. Marker set protocol and Acquisition Protocol – considerations 

All the kinematic and kinetic results, with the exception of the ankle angle, were consistent with the 

literature. The designed clothes helped to decrease substantially the time spent on markers 

placement. The clothes conferred stability to the markers, since the Velcro attachment caused the 

markers to drop fewer times than when scotch tape was used in skin. 

The cameras arrangement, presented in section 6.2, allowed to acquire with success all the 

markers from lower limbs, even though some problems were detected in acquisition of metacarpal 

markers. As mentioned, it was preferred to guarantee a good acquisition of medial markers from lower 

limbs because they allow the calculation of the articular centers with more precision. 

In general terms, the developed marker set protocol is robust and allows a fast assembly. For 

these reasons it is considered that it can be easily applied in clinical practice, considering two 
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changes. The first one is the use of another marker in V metatarsal, allowing the correct calculation of 

the ankle angle. The second one is to develop a new protocol, which enables the study of the time-

distance parameters without considering the necessity of hitting the force plates. As mentioned, men 

results showed slow cadence, while children present faster cadence results. Although subjects are 

asked to walk with natural cadences, in some cases their stride has been adapted to properly hit the 

force plates. 

7.6. sEMG patterns 

The protocol used to obtain the sEMG pattern is presented in section 6.3.1. Although the electrode 

placement was optimized to avoid the cross-talk artifacts, this effect can be observed in some subjects 

(especially in women and children). In some cases during placement of the soleus electrode, an 

activation signal from the muscles responsible for the foot dorsiflexion was observed. The 

measurement of Tibialis anterior may also contain this artifact caused by the activation of Triceps 

surae muscle, however, it is observed that if the electrode is placed in a location where the muscle is 

anterior to the tibia, this effect is reduced. One last note to retain is the fact that, in some subjects, 

significant variations in Gluteus maximus signal were not observed, most likely caused by the amount 

of adipose tissue in this body region. 

The results processed with MAV and normalized using peak value normalization (the maximum 

value is considered as 100% and the lowest as 0%) can be consulted in appendix E (Figure 76-82). 

Generally, these results are in accordance with the muscular pattern described in section 3.4. 

However, small differences can be observed in the Soleus. The soleus graphic presents three distinct 

peaks (0-10%, 20-60% and 90-100% of GC), though the expected results predict only one peak 

between 20% and 60% of GC. The first and third peaks correspond to artifacts introduced by muscle 

cross-talking. Although it was tried to avoid such artifact by choosing carefully the location for placing 

the electrode, such effort was not sufficient in some subjects, resulting in these artifacts. 

As expected, the inter-subject variance is considerable (vide 6.3), especially in the Gluteus 

maximus, rectus femoris and biceps femoris, where more adipose tissue exists. Although at first sight 

there do not seem to be great variations, a careful analysis allows to a clearly identification of the 

expected pattern of these muscles. 

The SESP achieved the desired objective, since it allowed the analysis of the patterns of activation 

of the principal lower limb muscular groups. However, this protocol presented a problem, which was 

the time that took to place all the electrodes. For this reason and if the objective is the clinical 

application, this protocol should be adapted to each pathological case. 
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Chapter VIII 

8. Results for Pathological Gait 

 

 

In this chapter the results obtained results for two subjects with different motor disabilities will be 

presented and analyzed. Firstly, intra-subject variability with and without prosthesis and orthosis will 

be studied. In a second section, pathological results will be compared with normal pattern results. The 

results presented were obtained using the protocol explained in section 6.4.2. Configuration 

parameters such as the cameras and force plates sampling frequency were the same as those of 

section 7.1. In this chapter, the option was put in presenting only the results that express significant 

differences. 

A male subject (13 years old) with Spina Bifida will be analyzed in section 8.1, and in section 8.2 a 

female subject (14 years old) with muscular weakness of lower limbs (leg) will be studied. 

8.1. Subject 1 – Spina bifida 

8.1.1. Remarks on subject preparation 

It is important to mention two points regarding the preparation of this subject. The first aspect is 

related to the placement of foot markers; in trials where the AFO was not used, foot markers were 

placed in the anatomical positions explained in section 6.1.2, and the subject walked through the 

treadmill with socks on.  However, in trials where the AFO was used, the subject had to wear tennis 

shoes to avoid slipping, and so the toe and heel markers were placed directly on these shoes. As the 

toe markers were placed a few millimeters over the toe, the heel markers had to be placed 

approximately at the same height, so that the foot angle (sagittal plane) would be null when the foot 

was flat. This aspect caused a small increase in toe and heel vertical displacement in the trials where 

the AFO was used (vide 8.1.4.1). On the other hand, the ankle markers were placed on the metallic 

structure medially/laterally to the malleolus (see Figure 46 a)). 

The second note is related to placement of electrodes. As referred in section 7.6 their placement is 

optimized to obtain the best signal possible with minimum cross-talking artifacts. During electrode 

placement of subject 1, an incapability of the subject to perform an ankle dorsiflexion was observed, 

as well as only small variations were observed in sEMG signal of tibialis anterior. The triceps surae 

muscles presented very small variations the subject was asked to perform a plantar flexion motion. 

Both tibialis anterior and triceps surae muscles presented clear evidence of muscular atrophy, which 

contrasted with the thigh muscles that demonstrated good muscle strength. While standing up static, 

the subject was observed to tend to flex his knees controlled by the action of knee extensors. A 

tendency to present a slight forward flexion of the trunk when the subject was standing up or walking 

through the treadmill was observed (vide Figure 46 a)-c)). 
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Figure 46 – Subject 1: a) Static position, b) Initial swing of right limb without AFO, c) IC of left foot without AFO, d) 
IC of right limb with AFO. 

8.1.2. Visual Observation 

The study will consider a first part comprising the analysis of results obtained without an ankle foot 

orthosis (AFO) and posteriorly of results obtained with a hinged AFO (free ankle dorsiflexion, free or 

restricted plantar flexion and medial lateral stabilization of subtalar joint) (ICRC 2006). It is important to 

mention that in visual terms the trials for the two cases presented significant differences. When the 

subject walked on the treadmill, he presented difficulties in maintaining body balance, using his arms 

and balancing the trunk (coronal plane) to try to maintain the stability (vide Figure 46 b) and c)). The 

subject also tended to walk with spread legs, as well as to present a higher foot angle (horizontal 

plane) than observed for normal subjects. Both external observation and the patient’s experience 

suggested an increase in stability with the use of the AFO. 

 

Table 11 - Time-distance parameters. Stride time, stride length, cadence and velocity were calculated taking the 
right IC as the reference point. The remaining parameters were calculated between the right IC and left IC 

 Men Children With no AFO With AFO 

   s   s         

Stride Time [s] 1.2850 0.1227 1.0500 0.0990 1.1340 0.09456 1.260 0.0887 

Stride Length [m] 1.2512 0.0614 1.1114 0.0140 1.1312 0.0979 1.1909 0.0748 

Step Time [s] 0.7190 0.0799 0.6300 0.0566 0.6460 0.0270 0.6340 0.0680 

Step Length [m] 0.6133 0.0222 0.5496 0.0140 0.6262 0.0415 0.5486 0.0998 

Cadence 

[steps/min] 

94.1882 9.4190 114.7959 10.8231 105.9548 4.1864 95.4442 6.3214 

Velocity [m.s
-1

] 0.9832 0.1202 1.0626 0.0868 0.9984 0.0914 0.9454 0.0586 

Width [m] 0.0580 0.0400 0.0219 0.0509 0.1436 0.0519 0.1571 0.0408 

Right Foot Angle 

[º]  

9.4155 5.6260 6.0226 1.4502 20.4926 8.0665 11.5078 4.0759 

Left Foot Angle [º] 5.5130 5.2233 3.3794 7.0867 36.8766 5.2067 20.9708 3.2361 

Table 11 shows the results obtained for the subject under study and for children and men with 

normal patterns. The differences between these and normal pattern results for width and foot angle 

parameters are evident, as are the differences between trials with and without AFO for these 

parameters. As mentioned in section 7.2.1, the values of time-distance parameters were affected by 
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the error introduced by the need of hitting the force plates. However, it is easily observed that the 

utilization of AFO helps to decrease foot angle values significantly. 

8.1.3. Intra-subject Variability 

The study of intra-subject variability allows for the understanding of the behavior and repeatability 

of patterns in a given subject. These results were obtained using the same principles as those behind 

the development of the database, which was used to study the gait patterns of normal subjects. The 

results were calculated using the mean of five valid trials (6.4.2). In appendix F the graphical 

representation of the main gait analysis parameters for subject 1 can be consulted. All of these graphs 

presented the same behavior, i.e. the obtained results for the trials where the AFO was not used 

showed higher standard deviation values than those obtained using the AFO. These results are 

consistent with what was observed during the trials, the use of AFO conferred stability and helped to 

control body balance. 

Especially in the trials where the AFO was not used, toe and heel displacement graphs, as well as 

joint angular displacement graphs showed a higher variability during the swing phase. These results 

were as expected given the subject’s tendency to perform an abrupt leg swing with excessive hip 

muscular tension, instead of the regular pendular behavior of the leg in normal subjects. This effect 

can be also observed in the major variability of hip moment during stance phase. 

8.1.4. Comparison between Subject 1 patterns and non-pathological patterns 

8.1.4.1. Foot displacement and velocity 

Comparing subject results for these parameters with those of normal patterns important differences 

are observed. The patient presented a lower value of toe vertical displacement during late swing, 

especially when the AFO was not used. This fact is related to the incapacity of the subject to perform 

foot dorsiflexion – drop foot; this same idea can be obtained observing the ankle angle graph (Figure 

48). The analysis of medial-lateral foot displacement corroborates the idea presented regarding the 

tendency of the subject to walk with spread legs. It is important to mention that the use of AFO helped 

to stabilize the foot, since it allowed the toe clearance during swing phase. However, the use of this 

orthosis did not yield improvements in the tendency of walking with spread legs, although the 

importance of its utilization in the control of foot angle (horizontal plane) is notorious – the values of 

toe medial-lateral displacement are closer to the normal pattern data, confirming the already 

presented idea that the use of AFO helps to stabilize this parameter. 

The analysis of these parameters also enables understanding important differences in the contact 

of the foot with the ground. Instead of being made with the heel, the contact appears to be made with 

the flat foot. During WA, for the trials where subject 1 did not use the AFO, toe vertical velocity does 

not present the typical decrease resulting from the controlled plantar flexion that occurs in this phase. 

Heel vertical velocity also tends to decrease in absolute value, being approximately null at 7% of GC. 

This fact shows that the heel was still in the air when foot contact with the ground happened. This 

analysis allows for the conclusion that the IC for subject 1 was made with the forefoot; this fact is 

expected since the subject presents symptoms of drop foot. On the other hand the trials where the 
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AFO was used presented significant improvements, with the foot hitting the ground with the heel and 

the parameters for this event being similar to the results obtained for normal male patterns. 

 

Figure 47 – Representation of displacement and velocity for Subject 1 without orthosis (blue), and with orthosis 
(red), and for a normal pattern (green/cyan): a) Vertical displacement of Toe; b) Vertical velocity of Toe c) Vertical 

velocity of Heel  

8.1.4.2. Joints Angles 

From a clinical point of view, the study of the joint angle during a gait cycle is important, since this 

enables extracting essential information about the effect of the disease in locomotion. After 

processing, this information allows helping the prosthesis/orthosis designers to develop biomedical 

correctives adapted to each patient. The joint angle patterns were compared with the normal patterns 

presented in section 7.2.3. Some differences were found between the plot obtained for the ankle and 

literature, caused by the use of the marker in the II toe instead of the V metatarsal. However, to enable 

the comparison of subject’s ankle angle with the normal patterns, the used apparatus was the same, 

so that the error introduced by this marker placement is approximately equal in both cases, allowing 

the direct comparison of the graphic curves. 

In the first instants of the ankle plot where the AFO was not used important differences are 

observed. At IC the foot does not present the slight dorsiflexion angle characteristic, of the foot-ground 

contact with the heel.  

No dorsiflexion angle is observed, and this angle usually generated to avoid the contact of the foot 

with the ground during the swing phase. This difference is related to the inability of the subject to 

perform the dorsiflexion, i.e. unless the foot is on the floor, it drops. 

The knee angle presented an abnormal pattern during the stride phase. The graphical 

representation of this parameter shows a first peak of approximately 35º with AFO and 30º without it, 

which remains approximately constant until the TO. This higher value is related to the necessity of the 

patient to flex the knees to help maintaining the balance, as mentioned in 8.1.1. 

In section 7.2.3 it was mentioned a difference in the children hip angle pattern caused by the 

forward flexion of the trunk, and the same effect was also visible for subject 1. Figure 48 shows the 

variation of the trunk angle for patient 1 during the stride period, and it is easily observed that, while 

this parameter for adult male and children varies respectively between ~88º - ~92º and ~83º - ~87º, 

this parameter for subject 1 presents a larger amplitude of variation (~73º - ~87º) The thigh pattern is 

relatively similar between children and patient 1, so that the plateau observed in the subject hip angle 

plot during the first 40% of the gait cycle is related with the higher value of trunk forward flexion during 

this phase.  



 

107 
 

The analysis of these three parameters shows that the use of AFO only helped improving the ankle 

angle pattern. Nevertheless, it is important to retain that the AFO only avoids the foot drop, it does not 

lead to a dorsiflexion of the foot. 

 

  
Figure 48 – Representation of joint angles for subject 1 without orthosis (blue), and with orthosis (red), and for a 

normal pattern (green/cyan): a) ankle; b) knee; c) hip d) trunk 

8.1.4.3. Ground Reaction forces and Center of Pressure 

As mentioned previously, subject 1 presented a tendency to perform an abrupt leg swing. As result, 

important differences are observed in the three components of GRF, especially in the range between 

0% and 20% of GC. This lack of leg control in the swing phase results in an abrupt impact with the 

ground, leading to higher magnitude values of reaction forces (vide Figure 49 a) b) c)). 

The study of COP is important to understand how the forces are acting in the subject’s feet. In trials 

where the AFO was not used it is easily observed that the COP advances by the medial arch of the 

foot, which contrasts with the pattern for non-pathological gait. Considering that the extremities of 

colored line segments of Figure 49 d) represent the heel and toe markers, it is evident that the COP 

begins in an anterior position when comparing with the normal pattern. The distance between the 

extremity of the line segment that represents the heel and the beginning of COP is clearly higher in the 

trials in which the AFO was not used. This is caused by the differences observed in the contact of foot 

with the ground during IC event. 

Although the AFO does not appear to improve these parameters (though its use decreased the 

magnitude of antero-posterior component of GRF, it increased the value of medial-lateral component 

of GRF), this fact is not true, since clear improvements are observed for the distribution of COP in the 

foot. The COP is clearly shifted to a lateral position and its action starts in a foot posterior position 

(heel). 



108 
 

It is important to highlight the idea presented by Perry and mentioned in section 3.6.2.1, which 

indicates that sometimes the analysis of vertical forces provides unreliable results, since the influence 

of the pathology in this parameter can be smaller than the decrease in speed inherent to the pathology 

or pain (Perry 1992). Due to this fact, it is advised to perform a small set of questions in which it is 

asked if the subject feels pain, where he feels it and if he usually changes his walking style to avoid 

this sensation. Subject 1 complained that sometimes the AFO induces him pain in the feet, probably 

caused by imperfections in the development of this device. 

 

Figure 49 – Ground Reaction forces and COP for subject 1 without orthosis (blue), and with orthosis (red) and for 
a normal pattern (green/cyan): a) Antero-posterior; b) medial-lateral; c) vertical d) COP – the color line segments 

represent the foot angle in horizontal place (end points – heel marker and toe marker) 

8.1.4.4. Joint Moments of Forces and Mechanical Power 

The analysis of these parameters for subject 1 allows understanding that his gait presents 

important differences from the normality, which results in patterns of expenditure energy quite different 

from those obtained in non-pathological gait. The obtained results are consistent with the literature; 

the weakness in dorsiflexors and plantar flexors tends to be compensated by the loading alteration in 

the other joints, especially the knee and hip. The torque and power pattern for the trials where the 

AFO is used are similar, since it does not alter the weakness of muscles, only conferring some stability 

to the ankle joint and foot (Gutierrez, Bartonek et al. 2005). 

The obtained results are consistent with the evidences observed during the subject preparation. 

The dorsiflexors paresis and the plantar flexors weakness result in lower torque values and less power 

generated in the ankle joint. These evidences are easily observed in the lower peak of these 

parameters during PO. The ankle torque results in the AFO absence do not present a small 

dorsiflexion torque for the first instants of WA, because as the foot hits the ground with its anterior 

part, the GRF vector is not applied in a posterior ankle position, as it happens when the contact with 
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the ground is done with the heel. Since the AFO avoids the drop foot during the swing phase, the foot 

hits the ground with the heel and therefore a small dorsiflexion toque is observed at the beginning of 

WA. 

It is important to note that 80-85% of the energy generated in a gait cycle is expended in the ankle 

during the PO, thus if the ankle movement presents abnormalities, as it happens for patient 1, this 

energy is compensated by the other joints. The plots of hip and knee mechanical power show this 

idea, and the results for both trials where the AFO was used or not, present in general higher peaks 

than those obtained for healthy gait. Other important observation is the fact that although the use of 

AFO increased the positive work generated in the knee, it also helped to decrease the positive work 

performed in the hip and consequently the total positive work.  

 

  
Figure 50 - Representation of torques and mechanical power for subject 1 without orthosis (blue), and with 

orthosis (red) and for a normal pattern (green/cyan): a) ankle torque; b) ankle power; c) knee torque; d) knee 
power; e) hip torque; f) hip power 

 

 

Table 12 – Positive and negative work for subject 1 
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 Normal pattern Without AFO With AFO 

 W
+
 [J/kg] W

-
 [J/kg] W

+
-W

-
 [J/kg] W

+
 [J/kg] W

-
 [J/kg] W

+
-W

-
 [J/kg] W

+
 [J/kg] W

-
 [J/kg] W

+
-W

-
 [J/kg] 

Ankle 0.0980 -0.1934 -0.0954 0.0214 -0.1299 -0.1085 0.0254 -0.1892 -0.1638 

Knee 0.0173 -0.1776 -0.1777 0.0257 -0.1846 -0.1589 0.0516 -0.2123 -0.1607 

Hip 0.1872 -0.0174 0.1692 0.2950 -0.0061 0.2889 0.2411 -0.0319 0.2092 

 0.3025 -0.3884  0.3421 -0.3206  0.3181 -0.4334  

 

8.1.4.5. Electromyographic Results 

The obtained results for sEMG patterns can be consulted in appendix G. The comparison of these 

results with the ones obtained for men show significant differences. Although subject 1 could not 

perform the ankle dorsiflexion, small peaks of sEMG signal were observed in Tibialis anterior during 

the first and last 10% of GC, which are consistent with the pattern observed in the adult male. Another 

peak was observed between the 50% and 70% of GC. 

The sEMG signal for Gastrocnemius medialis and Soleus does not present great variations during 

the whole gait cycle. This fact is consistent with the absence of signal variation observed during the 

subject preparation and his inability to perform an ankle plantar flexion. The Gastrocnemius lateralis 

graph presented a motion artifact typical curve caused by relative movement between the electrode 

and the skin, and so it will not be considered in this analysis. 

The sEMG pattern of Biceps femoris shows two peaks during the first and the last 20% of GC, 

which are in concordance with normal pattern. Park et al. studied the EMG pattern for children with 

myolomeningocele and also obtained activity during these intervals. However, these authors did not 

obtain the uncharacteristic peak observed in subject 1 during the terminal stance. This difference is 

probably related with a subject mechanism to help performing the act of walking (Park, Song et al. 

1997). 

In section 8.1.1 it was mentioned a tendency of the subject to flex the knees controlled by the 

action of knee extensors. Since the knees were never locked, caused by this flexion, and due to the 

localization of the COM in a knee posterior position, the knee extensors had to be activated in order to 

avoid the total flexion of the knees. This action could be observed when the subject was standing up, 

the sEMG signal presented a pattern of muscular activation during this phase. This fact influenced the 

sEMG signal of the trials, since the muscle was always active only small variations are observed 

during the typical peak phases (0-20%, 55-80% and 90-100%). Due to this fact the subject got tired 

quickly, supporting his weight on something in the interval between trials. 

The Gluteus maximus for subject 1 presented an abnormal pattern, no signal variation was 

observed during the entire GC. Although, the comparison of sEMG magnitudes is not used, since the 

sEMG signal varies significantly with the analyzed subject (vide 6.3), in this case it will be considered. 

Higher values are observed in the Gluteus maximus graph in comparison with normal patterns. This 

fact may be related with the constant activation of Gluteus maximus, as happened with Rectus 

femoris. As mentioned in chapter II, the Gluteus maximus, in addition to being a hip extensor, has also 

a function of assistance of the knee extension. For this reason, Gluteus maximus might have 

presented this pattern of activation, to help the quadriceps in the action of avoiding the total flexion of 

knee. 
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The analysis of the sEMG signal of Triceps surae muscles for the trials with AFO was not possible. 

This can be justified by the fact that the AFO was tightly attached to the leg, which caused friction on 

the electrodes, and consequently, movement artifacts on the analysis. On the other hand, the Tibialis 

anterior presented the same peak between the 50-70% of the GC, although the two characteristic 

peaks of the first and last 10% of GC were not observed. This fact may be related with the support 

given by the AFO for these phases. The subject might feel safer, and his control system did not send 

the electric impulses to try to perform the ankle dorsiflexion.  

The sEMG signal for Biceps femoris shows a pattern similar to those obtained without AFO, 

however, the uncharacteristic peak observed during terminal stance presents a lower value. 

The sEMG signal of the Rectus femoris of the right limb presented motion artifacts. However, 

analyzing the pattern for the left limb is clearly possible to observe a decrease of the magnitude of the 

values for the trials where the orthosis was used. The same result was obtained for the left gluteus 

maximus. These results are consistent with Park et al. and with the kinetic results for this subject. The 

use of the orthoses conferred stability to the subject, which decreased the demand on knee extensors 

(Park, Song et al. 1997). 

 

Figure 51 - Representation of sEMG signal of Rectus femoris (left limb) for subject 1 without orthosis (blue/black), 
and with orthosis (red/magenta) and for a normal pattern (green/cyan):  a) MAV b) Normalized 

 

Figure 52 - Representation of sEMG signal of Gluteus Maximus (left limb) for subject 1 without orthosis 
(blue/black), and with orthosis (red/magenta) and for a normal pattern (green/cyan):  a) MAV b) Normalized 
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8.2. Subject 2 – Muscle weakness of lower limbs (leg) 

8.2.1. Remarks on subject preparation 

It is important to mention that during the placement of sEMG electrodes no sEMG signal was 

observed in Tibialis anterior for both legs, as well as the inability of performing a voluntary foot 

dorsiflexion. The Triceps surae muscles presented very small variations when asked to perform a 

plantar flexion. Inclusively, the right soleus electrode did not detect any signal for this muscle. It is also 

noted that although the patient could make a foot plantar flexion, the range of motion and the 

produced force are relatively reduced in comparison to what is observed in healthy subjects. 

 

Figure 53 – Subject 2: a) IC of right foot without AFO b)MSw of right limb c) IC of right foot with rigid AFO d) IC of 
right foot with flexible AFO 

8.2.2. Visual Observation 

The analysis of subject 2 will consider three different parts. First, a comparative intra-subject 

variability study will be performed between the trials where the orthoses were and were not used. Two 

different orthoses are considered – hinged AFO (Figure 53 c)) and foot-up orthosis (Figure 53 d)). It is 

important to mention that the foot-up orthosis provides dorsiflexion assistance, helping to avoid the 

drop and slap foot. On the other hand, the hinged AFO allows free ankle dorsiflexion and free or 

restricted ankle plantar flexion, conferring also medial-lateral stabilization of the subtalar joint and the 

possibility of controlling the adduction/abduction of forefoot.(ICRC 2006) 

Visually, the trials where the AFOs were not used presented a drop foot symptom (vide Figure 53 

a) and b)). In order to enable the toe clearance, a tendency of the subject to a greater flexion of the 

knee is more prevalent that in normal gait. Another observed aspect was the great pelvic rotation 

during the swing phase, possibly as a mechanism used by the patient to improve the comfort while 

walking. Comparing the observed deviation with the abnormal gaits presented in chapter IV, subject 2 

presented clear symptoms of a steppage gait.  

The trials where the orthoses were used presented clear improvements; the symptom of drop foot 

was corrected conferring stability to the gait. It is also noted that the subject stated to feel safer with 

the hinged AFO than with the foot-up orthosis. 

Table 13 shows the time-distance parameters calculated for subject 2. The obtained results for 

stride/step length showed values inferior to those obtained for children and women. On the other 

hand, the stride/step time presented considerably higher values than that of these control groups. The 
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conjugation of these factors resulted in a cadence and velocity values lower than normal, as well as in 

the observed difficulty in hitting the force plates, supporting the idea already presented that the spatial 

arrangement of the force plates should be adapted to each subject, especially when an analysis is 

performed with a pathological individual. One last note to mention is the fact that the analysis of time-

distance parameters for the three types of trials performed did not show significant differences. 

 

Table 13 - Time-distance parameters. The stride time, stride length, cadence and velocity were calculated taking 
right IC as the reference point. The remaining parameters were calculated between the right IC and left IC 

 Women Children Without AFO With hinged AFO With foot-up AFO 

                     

Stride Time [s] 1.0829 0.1104 1.0500 0.0990 1.3633 0.0924 1.3267 0.0379 1.3033 0.0513 

Stride Length 

[m] 

1.2533 0.0589 1.1114 0.0140 1.0210 0.0497 1.0577 0.0608 1.0465 0.0416 

Step Time [s] 0.6286 0.0398 0.6300 0.0566 0.7900 0.0458 0.7733 0.0231 0.7467 0.0462 

Step Length [m] 0.6171 0.0372 0.5496 0.0140 0.5078 0.0288 0.5115 0.0398 0.5039 0.0270 

Cadence 

[steps/min] 

111.7962 11.2526 114.7959 10.8231 88.2796 5.7564 90.5007 2.5441 92.1655 3.5793 

Velocity [m.s
-1
] 1.1675 0.1278 1.0626 0.0868 0.7496 0.0159 0.7972 0.0380 0.8044 0.0589 

Width [m] 0.0760 0.0202 0.0219 0.0509 0.0408 0.0714 0.0700 0.0410 0.0853 0.0858 

Right Foot Angle 

[º]  

-1.1048 0.0202 6.0226 1.4502 14.0498 3.1674 15.7714 2.7092 13.6227 3.0278 

Left Foot Angle 

[º] 

-3.5493 3.2047 3.3794 7.0867 1.0391 8.3935 -7.5646 1.9808 -3.6452 2.7297 

8.2.3. Intra-subject Variability 

Due to the difficulty in performing a valid test and the limited time, the results are calculated using 

the mean for three valid trials. The graphical representation of the main parameters can be consulted 

in Appendix F.  

The obtained results for kinematic analysis followed the expected, i.e. the trials where the AFOs 

were not used presented, in general, standard deviation values higher than those obtained using 

orthoses. However, these differences are relatively small in comparison with those observed in subject 

1. Comparing the obtained results for hinged AFO and foot-up orthosis, no significant differences were 

found. 

The intra-subject variability of GRF components did not present significant differences between the 

three trials. The standard deviation values were relatively small, except for the medial-lateral 

component during the second half of the stride phase. 

The study of torques and mechanical power of joints has to be carried on separately. Analyzing the 

ankle, a decrease of the standard deviation values is observed in trials where the AFOs were used. 

Both orthoses presented similar standard deviation values, having an important role in the stabilization 

of this parameter. 

The obtained results for torque and power of the knee present a higher variability than those 

obtained for the ankle, especially during the MS and TS events. Comparing the three types of trials 

performed, it is possible to identify a clear stabilization of these parameters by the use of hinge AFO. 

The values of standard deviation are clearly lower than those obtained in the other trials. Similar 
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results were obtained for torque and power of the hip, i.e. a higher variability is observed during MS 

and TS events, while the use of hinge AFO contributed to the stabilization of hip kinetic parameters. 

Summarizing, differences between the three types of trials can be identified. The hinge AFO helped 

to stabilize all the kinetic and kinematic parameters. The foot-up orthosis seemed to have an important 

role in the stabilization of the ankle, but its use did not contribute substantially for improvements in 

variability of the hip and the knee kinetic parameters. 

8.2.4. Comparison between Subject 2 patterns and non-pathological patterns 

8.2.4.1. Foot displacement and velocity 

Comparing the obtained results of subject 2 for this parameter with those of subject 1, similarities 

were found in the contact of foot with the ground. The results of vertical toe velocity for the trials where 

the AFO was not used did not present the decrease in WA, resulting of the controlled plantar flexion 

that typically occurs in this phase. Observing the heel vertical velocity, an increase (less negative) of 

vertical velocity is noted, which is caused by the fact that at IC the heel is still in the air. It is also 

possible to observe that during the MSw and terminal swing phases, the subject presented a lower 

value of vertical toe displacement. These two evidences are a clear symptom of drop foot. 

Analyzing the results for the trials where the hinged AFO was used, a clear improvement in these 

parameters is observed. The contact of the foot with the ground was corrected, to be performed with 

the heel. On the other hand, the results for the trials where the foot-up orthosis was used also present 

some improvements. The contact is done with the heel (At IC, the heel presents a vertical velocity and 

vertical displacement almost null). Nevertheless, the toe vertical displacement and velocity show a 

similar pattern to the trials where the AFOs were not used. i.e., although the contact was done with the 

heel, the foot did not present a dorsiflexion angle as marked as the observed in tests with hinge AFO 

and in normal pattern. Possibly, one of the reasons that lead the subject 2 to feel safer with hinge AFO 

may be related with this difference. 

8.2.4.2. Joint Angle 

The analysis of the joint angles for subject 2 enables the identification of a set of deviations from 

the normality. The first difference is visualized on the ankle plot, which presents a typical pattern of 

drop foot. I.e. at IC event, the ankle is plantar flexed; the foot does not present a dorsiflexion angle. 

After TO, a dorsiflexion angle is also not observed.  

The second difference is observed in the knee angle plot. Although, generally, a knee flexion 

during the stance phase is observed – 2
nd

 determinant of gait, the subject 2 presented a plateau 

during this phase (~8º). On the other hand, a higher value of knee flexion is observed during swing 

phase. 

The hip presented a pattern relatively similar to the one obtained for normal subjects, though, 

during MSw and terminal swing events, this parameter presented values of hip flexion higher than 

those obtained for a normal pattern. This fact is consistent with the visual observation of the trials; the 

subject presented a tendency to flex the hip more than what is observed for normal subjects. These 

higher values of knee and hip flexion appear to be a mechanism presented by subject to ensure the 

toe clearance during this phase. 
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The analysis of the trials in which the AFOs were used shows they have an important role on the 

ankle stabilization. Both orthoses supported the foot during the periods in which it was not on the floor. 

However, small differences were observed between orthoses. While the use of the hinged AFO led to 

a clear foot dorsiflexion (vide Figure 53c), the foot-up orthosis only avoided the drop foot, i.e. when the 

foot hits the ground, it is almost flat (vide Figure 53d)). The obtained results for the trials in which the 

orthoses were used also show a decrease of the knee and hip flexion during the MSw and terminal 

swing. Nonetheless, these values are still higher than for normal pattern. 

 

Figure 54 - Representation of joint angles for subject 2 without orthosis (blue), with hinge AFO (red), and with 
foot-up orthosis (black) and for a normal pattern (green/cyan): a) ankle; b) knee; c) hip 

8.2.4.3. Ground Reaction Forces and Center of Pressure 

For all the different types of analyses, the antero-posterior component of GRF presents a pattern 

much similar to the obtained for normal subjects, However, differences were observed in vertical and 

medial-lateral components, causing an abnormal pattern of the COP(vide Figure 56). 

The analysis of medial-lateral component shows a lateral peak at 10% of GC higher than the 

observed for a normal pattern. On the other hand, the vertical component does not present the typical 

“m” curve; instead of two peaks (at ~13% and ~46% of GC), three peaks are observed, two in 

accordance with the normal pattern and another one at 25% of GC, where a minimum is usually 

observed (vide Figure 55 b) and c)). 

As afore mentioned, the COP pattern for subject 2 presented great differences from the normality. 

The obtained results for the trials where the orthoses were not used show that the application of the 

GRF vector does not start on the heel, beginning approximately in the middle of the foot (consequence 

of drop foot observed in this subject). The results obtained with the hinge AFO show that this problem 
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was, in part, corrected, i.e. although the application of the GRF vector starts approximately at the heel, 

abnormalities in the COP curve are still observed in the middle of the foot. When the foot-up orthosis 

was used, it is possibly to observe that the COP starts in an anterior position in relation to the starting 

point of the trials where no orthosis was used. This fact appears to be an apparent improvement, but it 

is also obvious that this parameter does not begin at the heel, as it would be expected for a corrective 

orthopedic device. 

 

Figure 55 - Ground Reaction forces for subject 2 without orthosis (blue), with hinge AFO (red), and with foot-up 
orthosis (black) and for a normal pattern (green/cyan): a) Antero-posterior; b) medial-lateral; c) vertical  

 

Figure 56 - COP for subject 2 without orthosis (blue), with hinged orthosis (red), and with foot-up orthosis (black) 
and for a normal pattern (green/cyan); the color line segments represent the foot angle in horizontal place (end 

points – heel marker and toe marker) 

8.2.4.4. Joint Moments of Forces and Mechanical Power 

The torque and mechanical power of the joints present patterns that are quite different from those 

observed in normal subjects. This fact was already expected, since the analysis of kinetic and GRF 

results allowed finding important deviations from the normality, which have repercussions in the 

calculation of these parameters. 

The ankle moment revealed a similar pattern to the one observed for subject 1, concordant with the 

muscular anomalies addressed in section 8.2.2. Once more, lower torque and power values are 

observed during PO, and the small dorsiflexion torque that is usually observed for the first instants of 

WA is nonexistent. Similar curves were observed in the different trials, which were already expected, 

since the orthoses only support the foot, not interfering with the generation of muscular contraction 

responsible for the ankle angular movements. 
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On the other hand the knee mechanical power presented a plateau during the first 40 % of GC. 

This fact is related in part with the differences observed in knee angle plot, where a plateau is also 

observed for this interval. Since the mechanical power is calculated from the multiplication of the 

torque by the angular velocity, if the angle is constant in this phase, the power will be null. 

No significant differences were observed in the kinetic parameters of the hip and knee between 

trials, with or without orthoses. Thus, the use of orthoses does not appear to have improved these 

parameters. In fact, as afore mentioned, the use of the orthoses has substantially decreased the intra-

variability for the hip and knee torque/power. This is an important observation, since it provided 

stability to the subject’s gait. 

 

Figure 57 - Representation of torques and mechanical power for subject 2 without orthosis (blue), with hinged 
orthosis (red) and with foot-up orthosis (black), and for a normal pattern (green/cyan): a) ankle torque; b) ankle 

power; c) knee torque; d) knee power; e) hip torque; f) hip power 
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Table 14 – Positive and negative work for subject 1 
 Normal pattern Without AFO With hinge AFO With Foot-up AFO 

 W
+
 

[J/kg] 

W
-
 

[J/kg] 

W
+
-W

-
 

[J/kg] 

W
+
 

[J/kg] 

W
-
 

[J/kg] 

W
+
-W

-
 

[J/kg] 

W
+
 

[J/kg] 

W
-
 

[J/kg] 

W
+
-W

-
 

[J/kg] 

W
+
 

[J/kg] 

W
-
 

[J/kg] 

W
+
-W

-
 

[J/kg] 

Ankle 0.1282 -0.1983 -0.0701 0.0305 -0.1213 -0.0908 0.0354 -0.0915 -0.0561 0.0337 -0.0838 -0.0501 

Knee 0.0258 -0.2684 -0.2426 0.0020 -0.2558 -0.2538 0.0031 -0.2587 -0.2556 0.016 -0.2617 -0.2600 

Hip 0.2813 -0.0252 0.2561 0.2262 -0.0280 0.1982 0.2297 -0.0060 0.2237 0.1539 -0.0286 0.1253 

Total 0.4353 -0.4919  0.2587   0.2682   0.2036   

 

8.2.4.5. Electromyographic Results 

Once more the results obtained for sEMG can be consulted in appendix G. As expected, these 

results presented significant differences in comparison to the normal patterns. The first appointment is 

related with the incapability of the subject to perform an ankle dorsiflexion. However, in line with the 

results of subject 1, signal variations were observed in Tibialis anterior plot during the first and last 

10% of the GC. In the same way, the trials where the orthoses were used presented lower values. 

This fact shows that exists a muscular activation, though such activation does not generate the 

desired movement. This last aspect may be related with the feeling of security provided by the 

orthoses, which leads to a lower muscular activation.  

The second difference was observed in the Triceps surae muscles. During the preparation subject 

2, it was observed that when asked to perform an ankle plantar flexion, she could only move few 

degrees and the sEMG signal variations were very small. However, the analysis of triceps surae 

muscles during the trial showed no signal variation during the entire gait cycle. This aspect is in 

concordance with the low value observed in the ankle power graph during the PO. 

Once more, the pattern obtained for Biceps femoris presented results similar to those obtained for 

subject 1. Two peaks during the first and last 10% of GC, which are in concordance with the normal 

pattern, and another during PO event. This abnormal activation may be related with a compensatory 

mechanism of the two subjects to help performing the ankle plantar flexion during the PO event, since 

there is no activity of the plantar flexors. 

The graphical representation of the Rectus femoris activation shows an abnormal pattern during 

the entire cycle for the different performed trials (with and without orthoses). An abnormal peak was 

observed between the 30-40% of the GC. This aspect may be related with the abnormal plateau 

observed in the knee angle graph during the stance phase (Figure 54). The Rectus femoris is 

activated, maintaining the knee extended. The Gluteus maximus pattern also presents this peak, and 

probably for the same reason, i.e. its action helps to maintain the knee extended. 

 

Figure 58 - Representation of sEMG signal of rectus femoris for subject 2 without orthosis (blue), with hinged AFO 
(red) and with foot-up orthosis (black), and for a normal pattern (green/cyan):  a) MAV b) normalized  
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Chapter IX 

9. Conclusions and Future Developments 

 

 

9.1. Conclusions 

In this thesis, the author’s proposal is to achieve four main objectives. The first consisted in the 

development of a gait acquisition protocol for LBL, which would enable the analyses of the principal 

time-distance, kinematic, kinetic and electromyographic parameters for non-pathological and 

pathological subjects. In order to apply in future clinical analysis, the protocol would consider two 

important aspects: robustness and fast assembly. The second objective aimed the development a set 

of routines, which would allow the data processing with the academic software – Apollo, and to create 

a database of non-pathologic gait. The third objective consisted in the acquisition of a population of 

subjects for three distinct groups – adult male, adult female and children. This step was very 

important, since it allowed to validate the protocols developed, comparing the obtained results with 

previous works, and it also allowed to acquire a set of data to use in future clinic analyses as normal 

pattern. Lastly, the fourth objective was aimed at the study of the gait of two pathological subjects with 

and without orthoses, comparing the deviations observed with other studies in order to help validating 

the designed protocol to future applications in study of pathological subjects. 

In order to achieve these four main objectives, several topics related with the non-pathological and 

pathological gait analysis were addressed. Chapter II presented the anatomy and terminology of 

articular movement. In chapter III addressed several topics related with the human gait, as well as 

methodologies used to its study. Chapter IV presented typical abnormal gaits, which are generally 

used to describe the gait of pathological individuals. Both chapter III and IV have been essential to the 

development of the protocol presented in chapter VI, since these allowed to understand the gait 

patterns that should be analyzed to obtain conclusive results. Chapter V presented the mathematic 

formulation of multibody system dynamic behind the kinematic and kinetic analysis performed in this 

thesis. The multibody formulation used to define the biomechanic model followed the methodologies 

presented by (De Jalon and Bayo 1994; Silva 2003), which are the basis of the Apollo software. This 

biomechanical model considers thirty three rigid bodies and twenty five anatomical points to define the 

sixteen anatomical segments (Figure 32). 

Chapter VI addressed important works related with the marker placement for visual motion 

acquisition systems. The designed marker set protocol used the ideas extracted for this analysis such 
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as that the first presented protocol (EMSP) considered the utilization of calibration markers to define 

the body segments and tracking markers to compute the movements, since this setting would tend to 

present better results, because it would be less affected by skin movement artifacts. Another aspect 

read in the literature was related with the use of plates and elastic bands to reduce the skin motion 

artifact and increase the subject’s time preparation. Hence, the thesis author designed a set of 

clothing accessories. After some locomotion tests, the utilization of a sewed velcro’s band proved to 

be the most effective mechanism used, since it allows an easy and fast marker placement, as well as 

it is washable and durable, and more importantly, its utilization does not allow small displacements or 

vibration, while it is in perfect condition. However, due to the problems related to the insufficient 

number of cameras in the laboratory, a new protocol had to be developed (MSP).  This protocol was 

based in HH marker set protocol, and it was designed to have the smallest number of possible 

markers (33), allowing also its utilization both in Apollo software as in Visual3D
TM

. 

In chapter VI some issues related with the acquisition and processing of electromyographic data 

were also discussed. The choice of muscular groups to analyze was based on the normal and 

abnormal gait patterns discussed in chapter III and IV respectively. The choice considered the 

principal joint motions: ankle dorsiflexion – tibialis anterior; ankle plantar flexion – triceps surae 

muscles; knee flexion – biceps femoris (long head); knee extension – quadriceps femoris (rectus 

femoris) and hip extension – gluteus maximus. 

Chapter VI also approached the acquisition protocols, as well as the routine developed to analyze 

experimental data and generate the database.  The database interface fulfilled the considered 

assumptions, since it allowed the analysis of all the principal parameters with importance in gait 

analysis, as well as it allowed to compare the results of a given subject with the normal patterns, 

enabling a quick and easy interpretation of the results. 

The analysis of time-distance parameters, such as stride/step length/time, cadency and velocity, for 

natural cadence of the non-pathological groups showed that these values were affected by the 

necessity of hitting correctly the force plates. During men trials, in order to allow the correct hitting of 

feet with force plates, it had to be asked to decrease slightly their stride/step length and their velocity. 

The inverse had to be asked to children. This resulted in values that were not in concordance with the 

expected, e.g. the difference between men and women cadence was higher than the expected, while 

the stride/step length presented practically the same value (due to the fixed force plate arrangement). 

Since one of the most important indicator of gait abnormalities are the study of these parameters, a 

different protocol should be considered to analyze these parameters. The author suggests including a 

set of trials in which it should not be considered the necessity of hitting the force plates. 

The analysis of displacement and velocity of feet markers, along with the study of COP, allowed 

understanding the mechanisms of toe clearance and ground contact, especially in pathological 

subjects. The observed differences between the obtained results for normal pattern and other studies 

were related with the different group velocities caused by the necessity of hitting the force plates. 

However, the observed patterns presented the expected behavior. 

Another important parameter, and widely used in clinics, is the study of joint angular displacement. 

Once more, small differences were observed between the obtained results and the literature. 
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Analyzing men joint angle and foot velocity, values more in agreement with those presented by Winter 

for slow cadence were observed. The analysis of the remaining kinematic and kinetic patterns also 

presented this tendency. 

Both knee and hip graphs presented the expected pattern, as well as the expected values. The 

only exception was observed in hip graph of children. Although, the pattern was similar, a maximum 

extension value of approximately 0º instead the normal -10º and a maximum flexion value of 35º 

instead the normal 25º was observed. This fact was caused by the anterior flexion of the trunk 

observed for the subjects of this group, which probably was caused by the use of the wireless EMG 

system in an abdomen anterior position. Equally, the study of joint angular velocities for knee and hip 

was in concordance with the expected pattern. 

On the other hand, the analysis of joint angular displacement and joint angular velocity of ankle 

presented some differences in relation with the literature, especially during plantar flexion events. This 

fact was caused by the use of the II phalange marker to calculate the foot angle (sagittal plane) 

instead of the V metatarsal head. In order to avoid this error in the future, it is advisable to adapt the 

MSP, considering one extra marker in V metatarsal head. 

The analysis of the three GRF components and COP showed values consistent with the expected, 

as well as low standard deviation values. The obtained duration of the stance phase and swing phase 

were respectively 63% and 37%, values that fit with those observed in the literature. 

One of the goals of performing a kinetic analysis is the calculation of the articular torques, since 

this analysis allows the understanding of how the forces are being applicable in joints, and it enables 

the calculation of the joint mechanical power and work. The obtained results for torque are consistent 

with the literature, as well as the idea that the inter-variability is higher in the hip joint. The mechanical 

power of the hip and the knee presented the pattern expected for all the groups. On the other hand, 

although the ankle results presented the same pattern, the magnitude of the characteristic peak during 

the PO presented a value slightly inferior than observed in literature. This difference came from the 

differences observed in the calculation of angular velocity of the ankle. 

The analysis of the six gait determinants presented the expected patterns. However, in order to 

improve the simplicity of the data treatment, it would be important to consider a new biomechanical 

model in Apollo, which considers the RIC and LIC markers (usually used to calculate the rotation and 

lateral tilt of the pelvis). 

Lastly, the obtained results for sEMG presented the patterns expected, allowing detect all the 

characteristics peaks. 

In general terms, the methodology used in this work presented consistency, robustness and fast 

applicability, generating results in concordance with the literature. The protocols enabled the analyses 

of all the important parameters, the designed clothes obtained good results and at the same time 

helped decreasing substantially the time of subject preparation. The database interface allowed an 

easy and quick consult to the pretended data, as well as to compare a given subject with his 

respective group. 

In order to achieve the fourth objective of this work, it was analyzed the gait of two subjects 

suffering from two neuromuscular diseases (subject 1 – male subject suffering from Spina Bifida (13 
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years old); subject 2 – female subject suffering from muscular weakness of lower limbs (leg) (14 years 

old)). For both subjects was studied the intra-subject variability with and without their orthoses (subject 

1 – hinge AFO; subject 2 – hinge AFO and foot-up orthosis) and, in a second section, these results 

were compared with those obtained for non-pathologic subjects.  

Subject 1 showed clear improvement in the trials where the AFO was used. In general terms, 

almost all kinematic and kinetic parameters presented standard deviations values lower in these trials.  

On the other hand, subject 2 presented slightly improvements in kinematic parameters for the trials 

where the orthoses were used. Comparing the results obtained for the two orthoses, it was not 

observed significant differences for these parameters. However, the same result was not observed for 

kinetic parameters. The standard deviation of GRF components presented relatively low values for the 

three trials of trials, so no significant differences were observed between these trials. The obtained 

results for torque and mechanical power of ankle showed clear improvements in trials where the 

orthoses were used, as well as no significant differences were observed between the standard 

deviations values of these trials. On the other hand, the use of hinge AFO also helped to stabilize the 

knee and hip kinetic parameters, while the use of foot-up orthosis did not contributed substantially with 

improvements in these parameters. 

Visually, subject 2 presented symptoms characteristics of a steppage gait: inability of performing an 

ankle dorsiflexion, drop foot symptom during swing phase, an increased flexion of hip and knee during 

swing phase, a decrease in step length and an increase of stride time. The kinematic data collected 

matches of the observations performed, suggesting that the guidelines established are in accordance 

with the clinical cases found in this thesis. This fact is an example of possible applications of the 

developed protocols in further studies of pathological gait. 

Comparing the three types of performed trials with normal patterns, it is possible observe a 

decrease in the maximum hip flexion and knee flexion in the trials where the orthoses were used. 

These results were expected, since the orthoses avoided the drop of foot during the swing phase, the 

subject did not need to flex these joints that much to ensure the toe clearance. Another important 

difference was the inexistence of a knee flexion during the stance phase, which was constant to the 

three types of trials. 

The analysis of GRF showed significant differences in vertical component for the trials with and 

without the orthoses. Instead of two peaks, three were observed, two in accordance with the normal 

pattern and another where it is usually observed a minimum, which resulted in significant differences 

in COP. Analyzing this last parameter and the displacement and velocity of foot, it was possible to 

confirming that the contact of foot with the ground was made with the forefoot (typical symptom of an 

equine gait). The use of hinge AFO allowed the correction of this symptom, passing the contact to be 

made by the heel. However, the same result was not observed when the foot-up orthosis was used. 

The analyses of the torque and mechanical power for the ankle showed significant differences. 

Lower torque and power values are observed during the PO event, which is in concordance with the 

incapability of the subject to perform an ankle plantar flexion. Similar curves were observed in the 

different trials, with and without orthoses, which were already expected, since the orthoses only 

support the feet and allow the toe clearance during the swing phase.  
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The analyses of the knee and hip torque also presented important differences. However, no 

significant differences were observed in the kinetic parameters of these joints between trials, with and 

without orthoses. Although the use of orthoses did not appear to have improved these parameters, 

this fact is not true, since its use contributed to decrease substantially the intra-variability of the hip 

and knee kinetic torque/mechanical power, which provided stability to the subject’s gait. 

On the other hand, subject 1 presented symptoms of different pathological gaits. Visually, his gait 

was characterized by a wide base of walking, difficulties in controlling the body balance, drop foot 

symptom, crouched gait among others. Clear improvements were observed when the AFO was used. 

The same results were achieved through the performed analysis, attesting again the robustness of the 

developed protocol and its possible application in further clinical studies. 

The analysis of joint angles for subject 1 showed significant differences. The ankle graph presented 

a typical drop foot curve, i.e. during swing phase the foot is plantar flexed due to the impossibility of 

subject performing the ankle dorsiflexion. The knee angle graph presented a higher knee flexion 

during stance phase; this difference is probably related with a mechanism used by subject to help 

maintain the balance of the body. It was observed that while the subject was standing, he presented a 

tendency to flex the knees and trunk to maintain this static posture. The hip angle graph also 

presented a small variation similar to those obtained for the children pattern and, once more, this 

difference was caused by the excessive anterior flexion of the trunk. It is important to mention that the 

use of orthosis did not show significant differences in knee and hip angle graph, though its utilization 

contributed to stabilize the ankle angle, supporting the foot during the swing phase. 

Subject 1 presented a tendency to perform an abrupt leg swing instead of the regular pendular 

behaviour of the leg observed in normal subjects. As a result, an abrupt impact of foot to the ground 

was observed during IC event. This fact resulted in significant differences in GRF components, all the 

components presented higher values, especially during the first 20% of GC. Similar results were 

observed for the trials where the AFO was not used. However, the use of the orthosis contributed 

significantly to improve the distribution of the COP in foot. In the trials where the AFO was not used, 

the COP began in a foot anterior position, progressing through the medial arch of the foot. On the 

other hand, in trials where the AFO was used, significant improvements were observed, the beginning 

of COP action started in heel and advanced through the lateral arch of the foot. 

The obtained results for kinetic parameters presented similar to those obtained in the literature, 

confirming the idea that the weakness or incapability in dorsiflexors and plantar flexors muscles tends 

to be compensated by the loading alterations in other joints, especially in the knee and the hip joints. 

The graphical representation of the ankle torque and mechanical power did not present the 

characteristic peak during PO, where in non-pathological gait is generated approximately 85% of 

energy generated in a GC. On the other hand, the graphical representation of the torques and 

mechanical power of the knee and hip showed significant differences in these parameters which 

resulted in higher values of generated positive work in these joints. Small differences were observed 

between the trials with and without AFO, though the positive work generated in the trials where the 

AFO was not used was higher. 
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Both subject 1and subject 2 presented significant differences in sEMG patterns, though presented 

some similarities: 1) The triceps surae muscles showed no signal variation during the entire gait cycle, 

which is in concordance with the low value observed in the ankle power graph during the PO for the 

two cases. 2) Both subjects presented an incapability to perform the ankle dorsiflexion. However, in 

both cases, two peaks were observed in the first and last 10% of the GC of the tibialis anterior 

(consistent with the normal pattern). This fact shows that exists an muscular activation, though such 

activation does not generate the desired movement. Another aspect is related with the lower values 

observed in this muscle when the orthoses were used. This last aspect may be related with the feeling 

of security provided by the orthoses, which appear have influence in the gait control system (no 

electric impulses are generated to try to perform the ankle dorsiflexion). 3) In both cases, an abnormal 

activation was observed during the PO event. This pattern may be related with a mechanism of both 

subjects to help performing the ankle plantar flexion during this phase. 

Other differences were observed in the sEMG patterns of rectus femoris and gluteus maximus, 

which seem being consistent with the kinetic and kinematic parameters. This fact helped to validate 

the applicability of the SESP at a clinical level. 

In general terms, the thesis author thinks that the developed method achieved all the goals 

proposed at the beginning. The developed protocol proved to be robust and quick, as well as 

applicable at a clinical level. The methodology of data treatment showed efficacy, enabling quickness 

and easiness in the analysis of a given subject. 

9.2. Future Developments 

In order to improve the results obtained for the time-distance parameters, the author recommends 

the development of another protocol. One possible idea would be to consider the use of pressure 

sensors in the foot and systems of motion acquisition, allowing the principal parameters to be 

calculate, such as the stride/step length, stride/step time, cadence, velocity and width. Using this 

protocol would also be possible to analyze the asymmetries in these parameters between the two 

legs.  

In this work was used the torque, mechanical power and work in joints as a mechanism of 

analyzing the energy in gait. However, it would be interesting to consider the utilization of experimental 

methods, such as the metabolic gas analysis systems or metabolic measurement carts, as well as 

electrocardiograms and sphygmomanometer. This information would allow the calculation of metabolic 

rates, relating these values with the kinetic results, as well as to compare the metabolic rates between 

pathological and non-pathological subjects.  

The second point would be to continue the study of non-pathological subjects, in order to increase 

the number of pattern subjects, and if possible to consider subjects from different regions of Portugal, 

ethnicities and social classes, with the aim of having a representative sample of the Portuguese 

population. Although the database is prepared to receive results of elderly population, this work did not 

perform any analysis for this group. Since, several works reported some differences in the gait of 

elderly (Hageman and Blanke 1986; Blanke and Hageman 1989; Winter 1991; Ostrosky, 

VanSwearingen et al. 1994); it would be enriching to acquire the data of this population. Sutherland et 

al. reported differences in the gait of children for different ages (Sutherland, Olshen et al. 1980; 
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Sutherland 1997); it would also be interesting to consider in the future not just one group but different 

groups according to their age. 

The third point would be the systematic application of the work developed in this thesis in the study 

of pathological subjects. However, it would be important to get a feedback from the medical 

community, about other possible parameters to acquire in order to improve the potentialities of the 

performed analysis. The obtained results may be used to help diagnose certain condition, but it will 

essentially be a source of information for physical rehabilitation, developing corrective biomedical 

devices (prosthesis, orthoses, active orthoses, etc.) adapted to the needs of each patient. Many 

subjects, who use these devices, usually complain of problems related with the lack of comfort, pain 

caused by imperfections in the development of these and fragility of the structure. In these cases, the 

thesis author suggests the development of a questionnaire that covers some issues related with the 

comfort of used prosthesis/orthosis, pain (e.g. if he feels pain when he uses the device, when and 

where), walking style (e.g. if he usually changes his walking style to avoid the sensation of pain), etc. 

The developed methodology may also be applicable in the study of patterns of a given pathology, 

considering not only the data of a single subject, but instead the data from a population of subjects 

with such pathology. This information can be posteriorly used to generate a database of pathological 

gaits, enabling the study of the characteristic deviations of this pathology and the comparison of 

pathological subjects with different pathological patterns. The information of this database can also be 

applied in physical rehabilitation, enabling the design of biomedical correctives with the capability of 

being used simultaneous in a set of different pathologies. 

It would be interesting to develop a routine that would allow to generate reports automatically in 

which it is described the principal time-distance, kinematic, kinetic and electromyographic parameters 

for a given subject, in order to be submitted to the  medical community or prosthetist/orthotist.  

Another idea would be to develop a series of routines that allows automatically the detection of 

deviations from normality, and if possible relating these with a database containing information of the 

main pathological gaits. Thus, it would be possible the comparison of the results with the normal 

patterns and with similar pathologies, and to obtain information not only of the subject but also of the 

subject condition. This information could also be presented in the report that is addressed in the 

preceding paragraph. 

 Eventually, the developed model may be used to the development of a database of human 

movements, i.e. use the methodologies developed in this work to study the pattern of other human 

movements, such as jumping, running, pushups, climbing stairs, etc. After being processed the data 

would be used as inputs for biomechanical computational models. 

Another application of the methodology developed in this work is the study of movements in elite 

sports, with the aim of perfecting these movements by improving their scores. For example, this 

methodology can be used to improve the technical skills of some athletic disciplines, such as shot put, 

javelin throw, discus throw, long jump and running. 

The final suggestion for further developments is the development of another biomechanical model 

in the Apollo software. This software has presented itself as a powerful tool to calculate the torques in 

joints. However, in order to enable the calculation of other parameters in the database, this new model 
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should consider four markers to define the foot (ankle, heel, II metatarsal head and V metatarsal head) 

and pelvis (left and right hip joint, LIC and RIC). Therefore, it makes it possible to calculate 

simultaneously in database various parameters such as the foot angle in sagittal and horizontal plane, 

inversion and eversion of foot, lateral pelvic tilt and pelvic rotation. 
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Appendix A – Anatomy 

 

Figure 59 – representation of human adult skeleton (Anterior View): Axial skeletal (Blue) and Appendicular 
Skeleton (yellow) (Tortora and Grabowsky 2004) 
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Figure 60 – Femur – Anterior View (Netter 2006) 

 

Figure 61 – Tibia and Fibula – Anterior View (Netter 2006) 
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Figure 62 – Foot bones: a) Lateral View (above) b) Dorsal View (below) (Netter 2006) 
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Figure 63 – representation of Women Pelvic girdle (Tortora and Grabowsky 2004) 

 

Figure 64 – representation of right hip bone (Tortora and Grabowsky 2004) 
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Figure 65 – Superficial Muscles of Hip and Thigh: a) Anterior View b) Posterior View (Netter) 
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Figure 66 – Superficial muscles of leg: a) Anterior view b) Posterior view (Netter) 
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Figure 67 – Structure of a typical synovial joint 

 

 

Figure 68 – Types of synovial joints: a) gliding (intercarpal articulation) b) pivot (atlas) c) hinge (elbow) d) 
condyloid (metacarpophalangeal articulations) e) saddle (trapezium articulates) f) ball-and-socket (hip joint) 
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Figure 69 – Joint movement terminology 
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Appendix B – Extensive Marker Set Protocol 

Maker 

Nº 

Location Anatomic Landmark Maker 

Nº 

Location Anatomic Landmark 

0 Anterior left 

Skull 

Temporal line of frontal bone 24 Pelvis Right PSIS 

1 Anterior Right 

Skull 

Temporal line of frontal bone 25 Left Distal 

Knee 

Most prominent point of lateral 

femoral epicondyle 

2 Posterior Left 

Skull 

Occipital protuberance (left) 26 Left Medial 

Knee 

Most prominent point of medial 

femoral epicondyle 

3 Posterior Right 

Skull 

Occipital protuberance (Right) 27 Left Distal 

Ankle 

Most prominent point of lateral 

malleolus 

4 neck Spinous Process of C7 28 Left Medial 

Ankle 

Most prominent point of medial 

malleolus 

5 Left Shoulder Clavicle – Acromion 29 Left Foot Upper ridge of the calcaneus 

posterior surface 

6 Right Shoulder Clavicle – Acromion 30 Left Foot II metatarsal head 

7 Left Distal 

Elbow 

Lateral epicondyle of humerus 31 Left Foot V metatarsal head 

8 Left Medial 

Elbow 

Medial epicondyle of humerus 32 Left Foot V metatarsal base 

9 Left Wrist  styloid process of radius 33 Right Distal 

Knee 

Most prominent point of lateral 

femoral epicondyle 

10 Left Wrist styloid process of ulna 34 Right Medial 

Knee 

Most prominent point of medial 

femoral epicondyle 

11 Left Hand Distal head of II Metacarpus 35 Right Distal 

Ankle 

Most prominent point of lateral 

malleolus 

12 Left Hand Distal head of V Metacarpus 36 Right Medial 

Ankle 

Most prominent point of medial 

malleolus 

13 Right Distal 

Elbow 

Most prominent point of  lateral 

epicondyle of humerus 

37 Right Foot Upper ridge of the calcaneus 

posterior surface 

14 Right Medial 

Elbow 

Most prominent point of  medial 

epicondyle of humerus 

38 Right Foot II metatarsal head 

15 Right Wrist styloid process of radius 39 Right Foot V metatarsal head 

16 Right Wrist styloid process of ulna 40 Right Foot V metatarsal base 

17 Right Hand Distal head of II Metacarpus 41 Left Hip Joint Center of acetabulum 

18 Right Hand Distal head of V Metacarpus 42 Right Hip 

Joint 

Center of acetabulum 

19 Pelvis Left iliac crest (LIC) 43-46 Left Thigh Cluster 

20 Pelvis Right iliac crest (RIC) 47-50 Left Leg Cluster 

21 Pelvis Left ASIS 51-54 Right Thigh Cluster 

22 Pelvis Right ASIS 55-58 Left Leg Cluster 

23 Pelvis Left PSIS    
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Appendix C – Developed Clothes 
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Appendix D – Database Interface 

  
Figure 70 – Representation of the developed interfaces: a) Main menu (GaitAnalysis.fig) b) Analysis of a single 

file (ApolloAnalysis.fig) 
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Appendix E – Graphical representation of normal patterns 

 

Figure 71 – Representation of displacement and velocity for men (blue/black), women (red/green), and children 
(cyan/magenta): a) Vertical displacement of Toe; b) Vertical velocity of Toe c) Vertical velocity of Heel 

 

  
Figure 72 - Representation of joint/segment angles for women (red/green), and children (cyan/magenta): ankle; b) 

knee; c) hip d) trunk 
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Figure 73 – Representation of the GRF and COP for women (red/green), and children (cyan/magenta): a) Antero-
posterior; b) medial-lateral; c) vertical d) COP – the color line segments represent the foot angle in horizontal 

place (end points – heel marker and toe marker) 

 

 

Figure 74 – Schematic representation of the 44 DOF of the biomechanical model used in the Apollo Software 
(Silva 2003) 
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Figure 75 - Representation of torques and mechanical power for men (blue/black), and children (cyan/magenta): 
a) ankle torque; b) ankle power; c) knee torque; d) knee power; e) hip torque; f) hip power 

 



 

153 

 

Figure 76 - Representation of sEMG signal of Gastrocnemius Lateralis for men (blue/black), women (red/green), 
and children (cyan/magenta): a) MAV b) Normalized 

 

Figure 77 - Representation of sEMG signal of Gastrocnemius Medialis for men (blue/black), women (red/green), 
and children (cyan/magenta): a) MAV b) Normalized 

 

Figure 78 - Representation of sEMG signal of Soleus for men (blue/black), women (red/green), and children 
(cyan/magenta): a) MAV b) Normalized 
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Figure 79 - Representation of sEMG signal of Tibialis Anterior for men (blue/black), women (red/green), and 
children (cyan/magenta): a) MAV b) Normalized 

 

Figure 80 - Representation of sEMG signal of Biceps Femoris for men (blue/black), women (red/green), and 
children (cyan/magenta): a) MAV b) Normalized 

 

Figure 81 - Representation of sEMG signal of Rectus Femoris for men (blue/black), women (red/green), and 
children (cyan/magenta): a) MAV b) Normalized 
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Figure 82 - Representation of sEMG signal of Rectus Femoris for men (blue/black), women (red/green), and 
children (cyan/magenta): a) MAV b) Normalized 
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Appendix F - Intra-subject Variability – Subject 1 and 2 

 

Figure 83 – Vertical displacement of Toe for: a) subject 1 (blue/black – without orthosis, red/green with hinged 
AFO b) subject 2 (blue/black – without orthosis, red/green with hinged AFO and cyan/magenta with foot-up 

orthosis) 
 

 

Figure 84 – Representation of joint angles for subject 1 without orthosis (blue/black), and with orthosis 
(red/green): a) ankle; b) knee; c) hip 
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Figure 85 - Representation of joint angles for subject 2 without orthosis (blue/black), with hinged orthosis 
(red/green) and with foot-up orthosis: a) ankle; b) knee; c) hip 

 

 

 

Figure 86 - Representation of joint moment of forces for subject 2 without orthosis (blue/black), with hinged 
orthosis (red/green) and with foot-up orthosis: a) ankle; b) knee; c) hip 
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Appendix G – Electromyographic results for subject 1 and 2 

 

Figure 87 - Representation of sEMG signal of Gastrocnemius Medialis for subject 1 without orthosis (blue/black), 
and for a normal pattern (green/cyan):  a) MAV b) Normalized 

 

Figure 88 - Representation of sEMG signal of Soleus for subject 1 without orthosis (blue/black), and for a normal 
pattern (green/cyan):  a) MAV b) Normalized 

 

Figure 89 - Representation of sEMG signal of Tibialis anterior for subject 1 without orthosis (blue/black), and with 
hinged AFO and for a normal pattern (green/cyan):  a) MAV b) Normalized 
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Figure 90 - Representation of sEMG signal of Biceps femoris for subject 1 without orthosis (blue/black), and with 
hinged AFO and for a normal pattern (green/cyan):  a) MAV b) Normalized 
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Figure 91 - Representation of sEMG signal of triceps surae muscles for subject 2 without orthosis (blue), with 
hinged AFO (red) and with foot-up orthosis (black), and for a normal pattern (green/cyan):  a) Gastrocnemius 
Lateralis - MAV b) Gastrocnemius Lateralis –Normalized c) Gastrocnemius Medialis - MAV d) Gastrocnemius 

Medialis –Normalized e) Soleus - MAV f) Soleus –Normalized 

 

 

Figure 92 - Representation of sEMG signal of Tibialis anterior muscles for subject 2 without orthosis (blue), with 
hinged AFO (red) and with foot-up orthosis (black), and for a normal pattern (green/cyan): a) MAV b) normalized 
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Figure 93 - Representation of sEMG signal of Biceps femoris muscles for subject 2 without orthosis (blue), with 
hinged AFO (red) and with foot-up orthosis (black), and for a normal pattern (green/cyan): a) MAV b) normalized 

 

 

Figure 94 - Representation of sEMG signal of Gluteus maximus muscles for subject 2 without orthosis (blue), with 
hinged AFO (red) and with foot-up orthosis (black), and for a normal pattern (green/cyan): a) MAV b) normalized 

 
 


